Polyploidization and Cancer pp 73-91

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 676) | Cite as

Role of the p53 Family in Stabilizing the Genome and Preventing Polyploidization

Abstract

Cellular defects resulting in chromosomal instability and aneuploidy are the most common features of human cancers. As a major tumor suppressor and intrinsic part of several cellular checkpoints, p53 contributes to maintenance of the stability of the genetic material, both in quality (ensures faithful replication) and quantity (preservation of diploidy). Although the exact trigger of p53 in case of numerical chromosomal aberrations is unknown, the absence of p53 allows polyploid cells to proliferate and generate unstable aneuploid progeny. A more recent addition to the p53 family, p73, emerged as an important contributor to genomic integrity when p53 is inactivated. p73 loss in p53-null background leads to a rapid increase in polyploidy and aneuploidy, markedly exceeding that caused by p53 loss alone. Constitutive deregulation of Cyclin-Cdk and p27/Kip1 activities and excess failure of the G2/M DNA damage checkpoint are important deficiencies associated with p73 loss.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381):15–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3):323–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408(6810):307–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Arai M, Shimizu S, Imai Y et al. Mutations of the Ki-ras, p53 and APC genes in adenocarcinomas of the human small intestine. Int J Cancer 1997; 70(4):390–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Bressac B, Kew M, Wands J et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 1991; 350(6317):429–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen SJ, Wang Q, Tong JH et al. Monoallelic deletions of the P53 gene in Chinese patients with chronic myelogenous leukemia in blastic crisis. Nouv Rev Fr Hematol 1991; 33(6):481–4.PubMedGoogle Scholar
  7. 7.
    Fagin JA, Matsuo K, Karmakar A et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993; 91(1):179–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Oda H, Zhang S, Tsurutani N et al. Loss of p53 is an early event in induction of brain tumors in mice by transplacental carcinogen exposure. Cancer Res 1997; 57(4):646–50.PubMedGoogle Scholar
  9. 9.
    Hung J, Mims B, Lozano G et al. TP53 mutation and haplotype analysis of two large African American families. Hum Mutat 1999; 14(3):216–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Law JC, Strong LC, Chidambaram A et al. A germ line mutation in exon 5 of the p53 gene in an extended cancer family. Cancer Res 1991; 51(23 Pt 1):6385–7.PubMedGoogle Scholar
  11. 11.
    Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 1990; 250(4985):1233–8.CrossRefGoogle Scholar
  12. 12.
    Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356(6366):215–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 1994; 8(1):66–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Donehower LA, Harvey M, Vogel H et al. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 1995; 14(1):16–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Harvey M, Sands AT, Weiss RS et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 1993; 8(9):2457–67.PubMedGoogle Scholar
  16. 16.
    Purdie CA, Harrison DJ, Peter A et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994; 9(2):603–9.PubMedGoogle Scholar
  17. 17.
    Elson A, Deng C, Campos-Torres J et al. The MMTV/c-myc transgene and p53 null alleles collaborate to induce T-cell lymphomas, but not mammary carcinomas in transgenic mice. Oncogene 1995; 11(1):181–90.PubMedGoogle Scholar
  18. 18.
    Blyth K, Terry A, O’Hara M et al. Synergy between a human c-myc transgene and p53 null genotype in murine thymic lymphomas: contrasting effects of homozygous and heterozygous p53 loss. Oncogene 1995; 10(9):1717–23.PubMedGoogle Scholar
  19. 19.
    Rong S, Donehower LA, Hansen MF et al. Met proto-oncogene product is overexpressed in tumors of p53-deficient mice and tumors of Li-Fraumeni patients. Cancer Res 1995; 55(9):1963–70.PubMedGoogle Scholar
  20. 20.
    Donehower LA, Godley LA, Aldaz CM et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 1995; 9(7):882–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson TC, Park SH, Timme TL et al. Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene 1995; 10(5):869–79.PubMedGoogle Scholar
  22. 22.
    Olive KP, Tuveson DA, Ruhe ZC et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119(6):847–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Lang GA, Iwakuma T, Suh YA et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119(6):861–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Wahl GM, Linke SP, Paulson TG et al. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv 1997; 29:183–219.PubMedGoogle Scholar
  25. 25.
    Agarwal ML, Agarwal A, Taylor WR et al. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995; 92(18):8493–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith KA, Agarwal ML, Chernov MV et al. Regulation and mechanisms of gene amplification. Philos Trans R Soc Lond B Biol Sci 1995; 347(1319):49–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Stewart N, Hicks GG, Paraskevas F et al. Evidence for a second cell cycle block at G2/M by p53. Oncogene 1995; 10(1):109–15.PubMedGoogle Scholar
  28. 28.
    Cross SM, Sanchez CA, Morgan CA et al. A p53-dependent mouse spindle checkpoint. cience 1995; 267(5202):1353–6.Google Scholar
  29. 29.
    Fukasawa K, Choi T, Kuriyama R et al. Abnormal centrosome amplification in the absence of p53. Science 1996; 271(5256):1744–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Almasan A, Linke SP, Paulson TG et al. Genetic instability as a consequence of inappropriate entry into and progression through S-phase. Cancer Metastasis Rev 1995; 14(1):59–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Almasan A, Yin Y, Kelly RE et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes and apoptosis. Proc Natl Acad Sci USA 1995; 92(12):5436–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15(17):2177–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Motoyama N, Naka K. DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 2004; 14(1):11–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Sengupta S, Linke SP, Pedeux R et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 2003; 22(5):1210–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Sengupta S, Shimamoto A, Koshiji M et al. Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene 2005; 24(10):1738–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Tibbetts RS, Brumbaugh KM, Williams JM et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999; 13(2):152–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Tibbetts RS, Cortez D, Brumbaugh KM et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000; 14(23):2989–3002.PubMedCrossRefGoogle Scholar
  38. 38.
    Squires S, Coates JA, Goldberg M et al. p53 prevents the accumulation of double-strand DNA breaks at stalled-replication forks induced by UV in human cells. Cell Cycle 2004; 3(12):1543–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Schwartz D, Rotter V. p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 1998; 8(5):325–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20(15):1803–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Kastan MB, Onyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51(23 Pt 1):6304–11.PubMedGoogle Scholar
  42. 42.
    Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005; 6(1):44–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Di Leonardo A, Khan SH, Linke SP et al. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res 1997; 57(6):1013–9.PubMedGoogle Scholar
  44. 44.
    Lanni JS, Jacks T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998; 18(2):1055–64.PubMedGoogle Scholar
  45. 45.
    Ford JM, Hanawalt PC. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci USA 1995; 92(19):8876–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Frank KM, Sekiguchi JM, Seidl KJ et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 1998; 396(6707):173–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Gao Y, Ferguson DO, Xie W et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 2000; 404(6780):897–900.PubMedCrossRefGoogle Scholar
  48. 48.
    Gao Y, Sun Y, Frank KM et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 1998; 95(7):891–902.PubMedCrossRefGoogle Scholar
  49. 49.
    Mummenbrauer T, Janus F, Muller B et al. p53 Protein exhibits 3′-to-5′ exonuclease activity. Cell 1996; 85(7):1089–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Fortunato EA, Spector DH. p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J Virol 1998; 72(3):2033–9.PubMedGoogle Scholar
  51. 51.
    Sturzbecher HW, Donzelmann B, Henning W et al. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 1996; 15(8):1992–2002.PubMedGoogle Scholar
  52. 52.
    Linke SP, Sengupta S, Khabie N et al. p53 interacts with hRAD51 and hRAD54 and directly modulates homologous recombination. Cancer Res 2003; 63(10):2596–605.PubMedGoogle Scholar
  53. 53.
    Bertrand P, Saintigny Y, Lopez BS. p53’s double life: transactivation-independent repression of homologous recombination. Trends Genet 2004; 20(6):235–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Bishop AJ, Hollander MC, Kosaras B et al. Atm-, p53-and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res 2003; 63(17):5335–43.PubMedGoogle Scholar
  55. 55.
    Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408(6811):433–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005; 5(10):773–85.PubMedCrossRefGoogle Scholar
  57. 57.
    Margolis RL, Lohez OD, Andreassen PR. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem 2003; 88(4):673–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Shi Q, King RW. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 2005; 437(7061):1038–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17(2):157–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Pellman D. Cell biology: aneuploidy and cancer. Nature 2007; 446(7131):38–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Fujiwara T, Bandi M, Nitta M et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437(7061):1043–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5(1):45–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet 2005; 6(11):836–46.PubMedCrossRefGoogle Scholar
  64. 64.
    Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003; 120(1):117–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Gupta S. Hepatic polyploidy and liver growth control. Semin Cancer Biol 2000; 10(3):161–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Vliegen HW, Eulderink F, Bruschke AV et al. Polyploidy of myocyte nuclei in pressure overloaded human hearts: a flow cytometric study in left and right ventricular myocardium. Am J Cardiovasc Pathol 1995; 5(1):27–31.PubMedGoogle Scholar
  67. 67.
    Oberringer M, Lothschutz D, Jennewein M et al. Centrosome multiplication accompanies a transient clustering of polyploid cells during tissue repair. Mol Cell Biol Res Commun 1999; 2(3):190–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Notterman D, Young S, Wainger B et al. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity. Oncogene 1998; 17(21):2743–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Mortimer RK. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat Res 1958; 9(3):312–26.PubMedCrossRefGoogle Scholar
  70. 70.
    Kato N, Lam E. Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci 2003; 116(Pt 11):2195–201.PubMedCrossRefGoogle Scholar
  71. 71.
    Verstraeten VL, Broers JL, Ramaekers FC et al. The nuclear envelope, a key structure in cellular integrity and gene expression. Curr Med Chem 2007; 14(11):1231–48.PubMedCrossRefGoogle Scholar
  72. 72.
    Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res 1990; 231(2):177–86.PubMedGoogle Scholar
  73. 73.
    Molnar M, Sipiczki M. Polyploidy in the haplontic yeast Schizosaccharomyces pombe: construction and analysis of strains. Curr Genet 1993; 24(1–2):45–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Hau PM, Siu WY, Wong N et al. Polyploidization increases the sensitivity to DNA-damaging agents in mammalian cells. FEBS letters 2006; 580(19):4727–36.PubMedCrossRefGoogle Scholar
  75. 75.
    Meraldi P, Honda R, Nigg EA. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/-cells. EMBO J 2002; 21(4):483–92.PubMedCrossRefGoogle Scholar
  76. 76.
    Ring D, Hubble R, Kirschner M. Mitosis in a cell with multiple centrioles. J Cell Biol 1982; 94(3):549–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Andreassen PR, Lohez OD, Lacroix FB et al. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 2001; 12(5):1315–28.PubMedGoogle Scholar
  78. 78.
    Margolis RL. Tetraploidy and tumor development. Cancer Cell 2005; 8(5):353–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Duensing A, Duensing S. Guilt by association? p53 and the development of aneuploidy in cancer. Biochem Biophys Res Commun 2005; 331(3):694–700.PubMedCrossRefGoogle Scholar
  80. 80.
    Uetake Y, Sluder G. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J Cell Biol 2004; 165(5):609–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Wong C, Stearns T. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number and cytokinesis failure. BMC Cell Biol 2005; 6(1):6.PubMedCrossRefGoogle Scholar
  82. 82.
    Borel F, Lohez OD, Lacroix FB et al. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci USA 2002; 99(15):9819–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Attardi LD, Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 2005; 576(1–2):4–21.PubMedGoogle Scholar
  84. 84.
    Frank KM, Sharpless NE, Gao Y et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 2000; 5(6):993–1002.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee Y, Barnes DE, Lindahl T et al. Defective neurogenesis resulting from DNA ligase IV deficiency requires Atm. Genes Dev 2000; 14(20):2576–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Sugawara N, Paques F, Colaiacovo M et al. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 1997; 94(17):9214–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Cranston A, Bocker T, Reitmair A et al. Female embryonic lethality in mice nullizygous for both Msh2 and p53. Nat Genet 1997; 17(1):114–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Strathdee G, Sansom OJ, Sim A et al. A role for mismatch repair in control of DNA ploidy following DNA damage. Oncogene 2001; 20(15):1923–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Aylon Y, Michael D, Shmueli A et al. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 2006; 20(19):2687–700.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhu J, Jiang J, Zhou W et al. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 1998; 58(22):5061–5.PubMedGoogle Scholar
  91. 91.
    Zaika A, Irwin M, Sansome C et al. Oncogenes induce and activate endogenous p73 protein. J Biol Chem 2001; 276(14):11310–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Yang A, Walker N, Bronson R et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404(6773):99–103.PubMedCrossRefGoogle Scholar
  93. 93.
    Mills AA, Zheng B, Wang XJ et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398(6729):708–13.PubMedCrossRefGoogle Scholar
  94. 94.
    Flores ER, Sengupta S, Miller JB et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 2005; 7(4):363–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Perez-Losada J, Wu D, DelRosario R et al. p63 and p73 do not contribute to p53-mediated lymphoma suppressor activity in vivo. Oncogene 2005; 24(35):5521–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Keyes WM, Wu Y, Vogel H et al. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 2005; 19(17):1986–99.PubMedCrossRefGoogle Scholar
  97. 97.
    Nozaki M, Tada M, Kashiwazaki H et al. p73 is not mutated in meningiomas as determined with a functional yeast assay but p73 expression increases with tumor grade. Brain Pathol 2001; 11(3):296–305.PubMedCrossRefGoogle Scholar
  98. 98.
    Moll UM, Erster S, Zaika A. p53, p63 and p73—solos, alliances and feuds among family members. Biochim Biophys Acta 2001; 1552(2):47–59.PubMedGoogle Scholar
  99. 99.
    Levrero M, De Laurenzi V, Costanzo A et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 2000; 113 (Pt 10):1661–70.PubMedGoogle Scholar
  100. 100.
    Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2002; 2(8):605–15.PubMedCrossRefGoogle Scholar
  101. 101.
    Melino G, Lu X, Gasco M et al. Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 2003; 28(12):663–70.PubMedCrossRefGoogle Scholar
  102. 102.
    Concin N, Becker K, Slade N et al. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 2004; 64(7):2449–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Massion PP, Taflan PM, Jamshedur Rahman SM et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 2003; 63(21):7113–21.PubMedGoogle Scholar
  104. 104.
    Marin MC, Jost CA, Brooks LA et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 2000; 25(1):47–54.PubMedCrossRefGoogle Scholar
  105. 105.
    Costanzo A, Merlo P, Pediconi N et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 2002; 9(1):175–86.CrossRefGoogle Scholar
  106. 106.
    Vayssade M, Haddada H, Faridoni-Laurens L et al. P73 functionally replaces p53 in Adriamycin-treated, p53-deficient breast cancer cells. Int J Cancer 2005; 116(6):860–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Moll UM. The Role of p63 and p73 in tumor formation and progression: coming of age toward clinical usefulness. Commentary re: F Koga et al, Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res 2003; 9:5501–5507; and P Puig et al. p73 Expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder Cancer. Clin Cancer Res 2003; 9:5642–5651. Clin Cancer Res 2003; 9(15):5437–41.Google Scholar
  108. 108.
    Gong JG, Costanzo A, Yang HQ et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399(6738):806–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Lissy NA, Davis PK, Irwin M et al. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 2000; 407(6804):642–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Herranz M, Santos J, Salido E et al. Mouse p73 gene maps to the distal part of chromosome 4 and might be involved in the progression of gamma-radiation-induced T-cell lymphomas. Cancer Res 1999; 59(9):2068–71.PubMedGoogle Scholar
  111. 111.
    Flores ER, Tsai KY, Crowley D et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002; 416(6880):560–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Talos F, Nemajerova A, Flores ER et al. p73 Suppresses Polyploidy and Aneuploidy in the Absence of Functional p53. Mol Cell 2007; 27(4):647–59.PubMedCrossRefGoogle Scholar
  113. 113.
    Watanabe A, Inokuchi K, Yamaguchi H et al. Near-triploidy and near-tetraploidy in hematological malignancies and mutation of the p53 gene. Clin Lab Haematol 2004; 26(1):25–30.PubMedCrossRefGoogle Scholar
  114. 114.
    Feijoo C, Hall-Jackson C, Wu R et al. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol 2001; 154(5):913–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Blain SW, Scher HI, Cordon-Cardo C et al. p27 as a target for cancer therapeutics. Cancer Cell 2003; 3(2):111–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Cheng M, Olivier P, Diehl JA et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18(6):1571–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78(1):67–74.PubMedCrossRefGoogle Scholar
  118. 118.
    Vassilev LT, Tovar C, Chen S et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA 2006; 103(28):10660–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Nakayama K, Nagahama H, Minamishima YA et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000; 19(9):2069–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Kossatz U, Dietrich N, Zender L et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev 2004; 18(21):2602–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Garcia P, Frampton J, Ballester A et al. Ectopic expression of cyclin E allows non-endomitotic megakaryoblastic K562 cells to establish rereplication cycles. Oncogene 2000; 19(14):1820–33.PubMedCrossRefGoogle Scholar
  122. 122.
    Matsumura I, Tanaka H, Kawasaki A et al. Increased D-type cyclin expression together with decreased cdc2 activity confers megakaryocytic differentiation of a human thrombopoietin-dependent hematopoietic cell line. J Biol Chem 2000; 275(8):5553–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Vogel C, Kienitz A, Hofmann I et al. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 2004; 23(41):6845–53.PubMedCrossRefGoogle Scholar
  124. 124.
    Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3(5):421–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Blint E, Phillips AC, Kozlov S et al. Induction of p57(KIP2) expression by p73beta. Proc Natl Acad Sci USA 2002; 99(6):3529–34.PubMedCrossRefGoogle Scholar
  126. 126.
    Nozell S, Chen X. p21B, a variant of p21(Waf1/Cip1), is induced by the p53 family. Oncogene 2002; 21(8):1285–94.PubMedCrossRefGoogle Scholar
  127. 127.
    Avni D, Yang H, Martelli F et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol Cell 2003; 12(3):735–46.PubMedCrossRefGoogle Scholar
  128. 128.
    Bosco EE, Mayhew CN, Hennigan RF et al. RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Res 2004; 32(1):25–34.PubMedCrossRefGoogle Scholar
  129. 129.
    Gonzalo S, Garcia-Cao M, Fraga MF et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 2005; 7(4):420–8.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Pathology, Health Science CenterState University of New York at Stony BrookStony Brook

Personalised recommendations