Quality Assessment of Still Images

  • Mohamed-Chaker Larabi
  • Christophe Charrier
  • Abdelhakim Saadane
Chapter

Abstract

In this chapter, a description of evaluation methods to quantify the quality of impaired still images is proposed. The presentation starts with an overview of the mainly subjective methods recommended by both the International Telecommunication Union (ITU) and International Organization for Standardization (ISO) and widely used by Video Quality Experts Group (VQEG). Then, the algorithmic measures are investigated. In this context, low-complexity metrics such as Peak Signal to Noise Ratio (PSNR) and Mean Squared Error (MSE) are first presented to finally reach perceptual metrics. The general scheme of these latter is based on the Human Visual System (HVS) and exploits many properties such as the luminance adaptation, the spatial frequency sensitivity, the contrast and the masking effects. The performance evaluation of the objective quality metrics follows a methodology that is described.

Keywords

Image quality assessment Evaluation methods Human visual system (HVS) International telecommunication union (ITU) International organization for standardization (ISO) Video quality experts group (VQEG) Low complexity metrics Peak signal to noise ratio (PSNR) Mean squared error (MSE) Perceptual metrics Contrast sensitivity functions Masking effects 

References

  1. 1.
    Altman DG (1991) Practical statistics for medical research. Chapman & Hall, LondonGoogle Scholar
  2. 2.
    Ardito M, Visca M (1996) Correlation between objective and subjective measurements for video compressed systems. SMPTE J 105(12):768–773CrossRefGoogle Scholar
  3. 3.
    Barten P (1990) Evaluation of subjective image quality with the square-root integral method. J Opt Soc Am 7(10):2024–2031CrossRefGoogle Scholar
  4. 4.
    Bechhofer RE, Santner TJ, Goldsman DM (1995) Design and analysis of experiments for statistical selection, screening and multiple comparisons. Wiley, New YorkGoogle Scholar
  5. 5.
    Bekkat N, Saadane (2004) A coded image quality assessment based on a new contrast masking model. J Electron Imag 2:341–348Google Scholar
  6. 6.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  7. 7.
    Cook RJ (1998) Kappa. In: Armitage TP, Colton T (eds.) The encyclopedia of biostatistics, Wiley, New York, pp 2160–2166Google Scholar
  8. 8.
    Daly S (1992) The visible difference predictor: an algorithm for the assessment of image fidelity. In: SPIE human vision, visual processing and digital display III, vol 1666. pp 2–15Google Scholar
  9. 9.
    David H (1988) The method of paired comparisons. Charles Griffin & Company, Ltd., LondonMATHGoogle Scholar
  10. 10.
    Eckert MP, Bradley AP (1998) Perceptual quality metrics applied to still image compression. Signal Process 70:177–200MATHCrossRefGoogle Scholar
  11. 11.
    Eskicioglu AM, Fisher PS (1993) A survey of quality measures for gray scale image compression. In: AIAA, computing in aerospace 9, vol 939. pp 304–313Google Scholar
  12. 12.
    Eskicioglu M, Fisher PS (1995) Image quality measures and their performance. IEEE Trans Comm 43(12):2959–2965CrossRefGoogle Scholar
  13. 13.
    Fales CL, Huck FO (1991) An information theory of image ghatering. Inform Sci 57–58: 245–285MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fleiss JL (1981) Statistical methods for rates and proportions. Wiley, New YorkMATHGoogle Scholar
  15. 15.
    Foley JM (1994) Human luminance pattern mechanisms: masking experiments require a new model. J Opt Soc Am 11(6):1710–1719CrossRefGoogle Scholar
  16. 16.
    Foley JM, Boynton GM (1994) A new model of human luminance pattern vision mechanisms: analysis of the effects of pattern orientation, spatial phase and temporal frequency. In: SPIE proceedings, vol 2054. San José, California, pp 32–42Google Scholar
  17. 17.
    Fontaine B, Saadane A (2004) Thomas a perceptual quality metrics: evaluation of individual components. In: International conference on image processing, Singapore, pp 24–27Google Scholar
  18. 18.
    Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906CrossRefGoogle Scholar
  19. 19.
    Girod B (1993) What’s wrong with mean-squared error. In: Watson AB (ed.) Digital images and human vision, MIT Press, Cambridge, MA, pp 207-220Google Scholar
  20. 20.
    Hall CF, Hall F (1977) A nonlinear model for the spatial characteristics of the human visual system. IEEE Trans Syst Man Cybern 7(3):161–170CrossRefGoogle Scholar
  21. 21.
    Huck FO, Fales CL, Alter-Gartenberg R, Rahman ZU, Reichenbach SE (1993) Visual communication: information and fidelity. J Visual Commun Image Represent 4(1):62–78CrossRefGoogle Scholar
  22. 22.
    Huck S, Cormier WH (1996) Reading statistics and research. Harper Collins, LondonGoogle Scholar
  23. 23.
    ISO 3664:2000 (2000) Viewing conditions-graphic technology and photography. Technical report, ISO, Geneva, SwitzerlandGoogle Scholar
  24. 24.
    ITU-R Recommendation BT.500–10: Methodology for the subjective assessment of the quality of television pictures (2000) Technical report, ITU, Geneva, SwitzerlandGoogle Scholar
  25. 25.
    Keelan BW (2002) Handbook of image quality: characterization and prediction. Dekker, New York, NYCrossRefGoogle Scholar
  26. 26.
    Kendall MG (1975) Rank correlation methods. Charles Griffin & Company, Ltd., LondonMATHGoogle Scholar
  27. 27.
    Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Limb JO (1979) Distorsion criteria of the human viewer. IEEE Trans Syst Man Cybern 9(12):778–793CrossRefGoogle Scholar
  29. 29.
    Linfoot EH (1958) Quality evaluation of optical systems. Optica Acta 5(1–2):1–13MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lubin J (1993) The use of psychophysical data and models in the analysis of display system performance. In: Watson A (ed.) Digital images and human vision, MIT, Cambridge, MA, pp 163–178Google Scholar
  31. 31.
    Macmillan NA, Creelman CD (1990) Detection theory: a user’s guide. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Mannos JL, Sakrison DJ (1974) The effects of visual fidelity criterion on the encoding of images. IEEE Trans Inform Theor 20(4):525–536MATHCrossRefGoogle Scholar
  33. 33.
    Miyahara M, Kotani K, Algazi VR (1998) Objective picture quality scale (PQS) for image 670 coding. IEEE Trans Comm 46(9):1215–1226CrossRefGoogle Scholar
  34. 34.
    Pappas TN, Safranek RJ (2000) Perceptual criteria for image quality evaluation. In: Bovik, A (ed.) Handbook of image and video processing, Academic, pp 669–684Google Scholar
  35. 35.
    Pearson ES, Hartley HO (1966) Biometrika tables for statisticians, vol 1. Cambridge University Press, CambridgeMATHGoogle Scholar
  36. 36.
    Peli E (1990) Contrast in complex images. J Opt Soc Am 7(10):2032–2040CrossRefGoogle Scholar
  37. 37.
    Pelli DG (1990) The quantum efficiency of vision. In: Blakemore C (ed.) Vision: coding and efficiency, Cambridge University Press, Cambridge, pp 3–24Google Scholar
  38. 38.
    Reichenbach SE, Park SK, O’Brien GF, Howe JD (1992) Efficient high-resolution digital filtres for flir images. In: SPIE, Visual Information Processing, vol 1705. pp 165–176Google Scholar
  39. 39.
    Siegel S, Castellan NJ (1988) Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, BostonGoogle Scholar
  40. 40.
    Silverstein DA, Farrell JE (1996) The relationship between image fidelity and image quality. In: IEEE international conference image processing, pp 881–884Google Scholar
  41. 41.
    Teo PC, Heeger DJ (1994) Perceptual image distortion. In: International conference on image processing, pp 982–986Google Scholar
  42. 42.
    Thurstone LL (1927) Psychophysical analysis. Am J Psych 38:368–389CrossRefGoogle Scholar
  43. 43.
    VQEG: Final report from the video quality experts group on the validation of objective models of video quality assessment. Technical report, ITU-R. http://www.vqeg.org/
  44. 44.
    Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3): 81–84CrossRefGoogle Scholar
  45. 45.
    Wang Z, Bovik AC, Lu L (2002) Why is image quality assessment so difficult. In: Proceedings of ICASSP, Vol 4. Orlando, FL, pp 3313–3316Google Scholar
  46. 46.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  47. 47.
    Watson AB (1987) The cortex transform: Rapid computation of simulated neural images. Comput Vis Graph Image Process 39:311–327CrossRefGoogle Scholar
  48. 48.
    Watson AB, Borthwick R, Taylor M (1997) Image quality and entropy masking. In: SPIE proceedings, vol 3016. San José, California pp 358–371Google Scholar
  49. 49.
    Watson AB, Solomon JA (1997) Model of visual contrast gain control and pattern masking. J Opt Soc Am 14(9):2379–2391CrossRefGoogle Scholar
  50. 50.
    Winkler S (1999) A perceptual distortion metric for digital color images. In: SPIE proceedings, vol 3644. San José, CaliforniaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohamed-Chaker Larabi
    • 1
  • Christophe Charrier
    • 2
  • Abdelhakim Saadane
    • 1
  1. 1.Laboratory XLIM-SIC, UMR CNRS 7252University of PoitiersPoitiersFrance
  2. 2.GREyC Laboratory, UMR CNRS 6072Image teamCaenFrance

Personalised recommendations