Advertisement

Nano-Photonics and Opto-Fluidics on Bio-Sensing

  • Ming C. WuEmail author
  • Arash Jamshidi
Chapter

Abstract

Optofluidics is the integration of optical and microfluidic systems to achieve novel functionalities. An important ability of optofluidics is the manipulation, assembly, and patterning of objects of interest in a microfluidic environment. Recent advances in nanophotonics have introduced exciting methods for biological and chemical sensing with single molecule sensitivities. Therefore, the integration of nanophotonic sensors with optofluidic manipulation platforms is essential for sensing and monitoring of single cells and other biomaterials. In recent years, optoelectronic tweezers (OET) have emerged as a powerful technique for the manipulation of micro and nanoscopic particles. Here, we will present the capabilities of OET optofluidic platform for parallel manipulation of single cells and large-scale patterning of nanophotonic sensors.

Keywords

Raman Signal Optical Tweezer Spatial Light Modulator Nonuniform Electric Field Digital Micromirror Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Chronis and L. P. Lee, “Electrothermally activated SU-8 microgripper for single cell manipulation in solution,” IEEE Journal of Microelectromechanical Systems, vol. 14, pp. 857–863, 2005.Google Scholar
  2. 2.
    C. G. Keller and R. T. Howe, “Hexsil tweezers for teleoperated micro-assembly,” in Tenth Annual IEEE International Workshop on Micro Electro Mechanical Systems (MEMS), 1997, pp. 72–77.Google Scholar
  3. 3.
    C. J. Kim, A. P. Pisano, and R. S. Muller, “Silicon-processed overhanging microgripper,” IEEE Journal of Microelectromechanical Systems, vol. 1, pp. 31–36, 1992.Google Scholar
  4. 4.
    J. Cheng, E. L. Sheldon, L. Wu, M. J. Heller, and J. P. O’Connell, “Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip,” Analytical Chemistry, vol. 70, pp. 2321–2326, 1998.Google Scholar
  5. 5.
    P. R. C. Gascoyne and J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments,” Proceedings of the IEEE, vol. 92, pp. 22–42, 2004.Google Scholar
  6. 6.
    P. R. C. Gascoyne, X.-B. Wang, Y. Huang, and F. F. Becker, “Dielectrophoretic separation of cancer cells from blood,” IEEE Transactions on Industry Applications, vol. 33, pp. 670–678, 1997.Google Scholar
  7. 7.
    R. Pethig, M. S. Talary, and R. S. Lee, “Enhancing traveling-wave dielectrophoresis with signal superposition,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 43–50, 2003.Google Scholar
  8. 8.
    R. Krupke, F. Hennrich, H. von Lohneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, pp. 344–347, Jul 18 2003.Google Scholar
  9. 9.
    S. Y. Lee, T. H. Kim, D. I. Suh, J. E. Park, J. H. Kim, C. J. Youn, B. K. Ahn, and S. K. Lee, “An electrical characterization of a hetero-junction nanowire (NW) PN diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 36, pp. 194–198, Feb 2007.Google Scholar
  10. 10.
    P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Applied Physics Letters, vol. 77, pp. 1399–1401, Aug 28 2000.Google Scholar
  11. 11.
    S. J. Papadakis, Z. Gu, and D. H. Gracias, “Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays,” Applied Physics Letters, vol. 88, 2006.Google Scholar
  12. 12.
    C. R. Cabrera and P. Yager, “Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques,” Electrophoresis, vol. 22, pp. 355–362, 2001.Google Scholar
  13. 13.
    C. R. Barry, J. Gu, and H. O. Jacobs, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Letters, vol. 5, pp. 2078–2084, 2005.Google Scholar
  14. 14.
    N. G. Loucaides, A. Ramos, and G. E. Georghiou, “Trapping and manipulation of nanoparticles by using jointly dielectrophoresis and AC electroosmosis,” Journal of Physics: Conference Series, vol. 100, 2008.Google Scholar
  15. 15.
    A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109–1111, 1999.Google Scholar
  16. 16.
    H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, vol. 4, pp. 995–998, 2004.Google Scholar
  17. 17.
    M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, D. H. Reich, P. C. Searson, and G. J. Meyer, “Magnetic alignment of fluorescent nanowires,” Nano Letters, vol. 1, pp. 155–158, 2001.Google Scholar
  18. 18.
    A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, “Magnetic manipulation of copper-tin nanowires capped with nickel ends,” Nano Letters, vol. 4, pp. 487–490, 2004.Google Scholar
  19. 19.
    D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, vol. 6, pp. 1445–1449, 2006.Google Scholar
  20. 20.
    A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger, and A. Daridon, “Microfluidic device for single-cell analysis,” Analytical Chemistry, vol. 75, pp. 3581–3586, 2003.Google Scholar
  21. 21.
    A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Analytical Chemistry, vol. 74, pp. 2451–2457, 2002.Google Scholar
  22. 22.
    A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, p. 156, 1970.Google Scholar
  23. 23.
    A. Ashkin, M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature, vol. 330, pp. 769–771, 1987.Google Scholar
  24. 24.
    S. K. Mohanty, A. Rapp, S. Monajembashi, P. K. Gupta, and K. O. Greulich, “Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm,” Radiation Research, vol. 157, pp. 378–385, 2002.Google Scholar
  25. 25.
    K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophysical Journal, vol. 77, pp. 2856–2863, 1999.Google Scholar
  26. 26.
    P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, Jul 21 2005.Google Scholar
  27. 27.
    S. Adachi, Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles: Boston: Kluwer Academic Publishers, 1999.Google Scholar
  28. 28.
    R. Schwarz, F. Wang, and M. Reissner, “Fermi level dependence of the ambipolar diffusion length in silicon thin film transistors,” Applied Physics Letters, vol. 63, pp. 1083–1085, 1993.Google Scholar
  29. 29.
    A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, pp. 85–89, 2008.Google Scholar
  30. 30.
    H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, pp. 165–172, DOI 10.1039/b906593h, 2010.Google Scholar
  31. 31.
    Y. Higuchi, T. Kusakabe, T. Tanemura, K. Sugano, T. Tsuchiya, and O. Tabata, “Manipulation system for nano/micro components integration via transportation and self-assembly,” in Conference on Micro Electro Mechanical Systems, 2008.Google Scholar
  32. 32.
    X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE Journal of Selected Topics in Quantum Electronics: Special Issue on Biophotonics, vol. 13, pp. 1655–1662, 2007.Google Scholar
  33. 33.
    X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Optics Express, vol. 16, p. 13517, 2008.Google Scholar
  34. 34.
    W. Wang, Y. H. Lin, T. F. Guo, and G. B. Lee, “Manipulation of biosamples and microparicles using optical images on polymer devices,” in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.Google Scholar
  35. 35.
    P. Y. Chiou, W. Wong, J. C. Liao, and M. C. Wu, “Cell addressing and trapping using novel optoelectronic tweezers,” IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, 17th, Maastricht, Netherlands, Jan. 25–29, 2004, pp. 21–24, 2004.Google Scholar
  36. 36.
    W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD),” Microfluidics and Nanofluidics, vol. 3, pp. 217–225, 2007.Google Scholar
  37. 37.
    H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis, vol. 29, pp. 1203–1212, 2008.Google Scholar
  38. 38.
    P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, 2008.Google Scholar
  39. 39.
    J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 17, 2008.Google Scholar
  40. 40.
    S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Optics Express, vol. 15, pp. 12619–12626 2007.Google Scholar
  41. 41.
    A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 16, pp. 491–499, 2007.Google Scholar
  42. 42.
    A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically-controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 243, pp. 235–243, 2007.Google Scholar
  43. 43.
    Y.-S. Lu, Y.-P. Huang, J. A. Yeh, C. Lee, and Y.-H. Chang, “Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP),” Optical and Quantum Electronics, vol. 37, pp. 1385–1395, 2005.Google Scholar
  44. 44.
    H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for cell manipulation in highly conductive solution,” in Solid-State Sensors, Actuators and Microsystems Conference, 2007.Google Scholar
  45. 45.
    H. Y. Hsu, H. Lee, S. Pautot, K. Yu, S. Neale, A. T. Ohta, A. Jamshidi, J. Valley, E. Isocaff, and M. C. Wu, “Sorting of differentiated neurons using phototransistor based optoelectronic tweezers for cell replacement therapy of neurodegenerative diseases,” in The 15th International Conference on Solid-State Sensors, Actuators and Microsystems Denver, Colorado, 2009.Google Scholar
  46. 46.
    S. L. Neale, Z. Fan, A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, A. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics 2009.Google Scholar
  47. 47.
    A. T. Ohta, A. Jamshidi, P. J. Pauzauskie, H. Y. Hsu, P. Yang, and M. C. Wu, “Trapping and transport of silicon nanowires using lateral-field optoelectronic tweezers,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, 2007, pp. 828–829.Google Scholar
  48. 48.
    A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in 2008 IEEE/LEOS International Conference on Optical MEMS and Nanopotonics, 2008.Google Scholar
  49. 49.
    P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. Satcher, J. H. and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, pp. 113104–1, 2009.Google Scholar
  50. 50.
    A. Jamshidi, H. Y. Hsu, J. K. Valley, A. T. Ohta, S. Neale, and M. C. Wu, “Metallic nanoparticle manipulation using optoelectronic tweezers,” in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.Google Scholar
  51. 51.
    M. Hoeb, J. O. Radler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophysical Journal, vol. 93, pp. 1032–1038, 2007.Google Scholar
  52. 52.
    Y.-H. Lin, C.-M. Chang, and G.-B. Lee, “Manipulation of single DNA molecules by using optically projected images,” Optics Express, vol. 17, pp. 15318–15329, 2009.Google Scholar
  53. 53.
    J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab on a Chip, vol. 9, pp. 1714–1720, 2009.Google Scholar
  54. 54.
    Y.-H. Lin and G. B. Lee, “An optically induced cell lysis device using dielectrophoresis,” Applied Physics Letters, vol. 94, p. 033901, 2009.Google Scholar
  55. 55.
    Y.-H. Lin and G.-B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, pp. 572–578, 2008.Google Scholar
  56. 56.
    A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Letters, vol. 9, pp. 2921–2925, 2009.Google Scholar
  57. 57.
    S. Park, C. Pan, T.-H. Wu, C. Kloss, S. Kalim, C. E. Callahan, M. Teitell, and E. P. Y. Chiou, “Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium,” Applied Physics Letters, vol. 92, pp. 151101–1511013, 2008.Google Scholar
  58. 58.
    H. Hwang, Y. Oh, J. J. Kim, W. Choi, J. K. Park, S. H. Kim, and J. Jang, “Reduction of nonspecific surface-particle interactions in optoelectronic tweezers,” Applied Physics Letters, vol. 92, p. 3, 2008.Google Scholar
  59. 59.
    G. J. Shah, A. T. Ohta, P. Y. Chiou, M. C. Wu, and C.-J. Kim, “EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis,” Lab on a Chip, vol. 9, pp. 1732–1739, 2009.Google Scholar
  60. 60.
    G. J. Shah, P. Y. Chiou, J. Gong, A. T. Ohta, J. B. Chou, M. C. Wu and C.-J. Kim, in Proc. IEEE Int. Conf. MEMS, Istanbul, Turkey, pp. 129–132, 2006.Google Scholar
  61. 61.
    T. B. Jones, Electromechanics of Particles: Cambridge University Press, 1995.Google Scholar
  62. 62.
    P. Y. Chiou, A. T. Ohat, A. Jamshidi, H.-Y. Hsu, and J. W. Chou, M. C., “Light-actuated AC electroosmosis for optical manipulation of nanoscale particles,” in Proceedings of Solid-State Sensor, Actuator, and Microsystems Workshop 2006, pp. 56–59.Google Scholar
  63. 63.
    J. Voldman, “Electrical forces for microscale cell manipulation,” Annual Review of Biomedical Engineering, vol. 8, pp. 425–454, 2006.Google Scholar
  64. 64.
    G. Fuhr, H. Glassera, T. Müllera and T. Schnellea, “Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media”, vol. 1201, pp. 353–360, 1994.Google Scholar
  65. 65.
    J. A. Lundqvist, F. Sahlin, M. A. I. Aberg, A. Stromberg, P. S. Eriksson, and O. Orwar, “Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes,” Proceedings of the National Academy of Sciences, vol. 95, pp. 10356–10360, 1998.Google Scholar
  66. 66.
    E. Neumann, M. Schaeferridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO Journal, vol. 1, pp. 841–845, 1982.Google Scholar
  67. 67.
    H. Q. He, D. C. Chang, and Y. K. Lee, “Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells,” Bioelectrochemistry, vol. 70, pp. 363–368, 2007.Google Scholar
  68. 68.
    L. A. MacQueen, M. D. Buschmann, and M. R. Wertheimer, “Gene delivery by electroporation after dielectrophoretic positioning of cells in a non-uniform electric field,” Bioelectrochemistry, vol. 72, pp. 141–148, 2008.Google Scholar
  69. 69.
    J. C. Weaver, “Electroporation of cells and tissue,” IEEE Transactions on Plasma Science, vol. 28, pp. 24–33, 2000.Google Scholar
  70. 70.
    P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab on a Chip, vol. 6, pp. 207–212, 2006.Google Scholar
  71. 71.
    S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Analytical Chemistry, vol. 74, pp. 6392–6396, 2002.Google Scholar
  72. 72.
    T. K. Jun and C. J. Kim, “Microscale pumping with traversing bubbles in microchannels,” Journal of Applied Physics, vol. 83, 1998.Google Scholar
  73. 73.
    M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science, vol. 315, pp. 832–835, 2007.Google Scholar
  74. 74.
    J. A. Schwartz, J. V. Vykoukal, and P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip,” Lab on a Chip, vol. 4, pp. 11–17, 2004.Google Scholar
  75. 75.
    M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab on a Chip, vol. 2, pp. 96–101, 2002.Google Scholar
  76. 76.
    P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A: Physical, vol. 104, pp. 222–228, 2003.Google Scholar
  77. 77.
    G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nature Materials, vol. 5, 2006.Google Scholar
  78. 78.
    D. E. Kataoka, “Patterning liquid flow on the microscopic scale,” Nature, vol. 402, pp. 794–797, 1999.Google Scholar
  79. 79.
    K. T. Kotz, K. A. Noble, and G. W. Faris, “Optical microfluidics,” Applied Physics Letters, vol. 85, pp. 2658–2660, 2004.Google Scholar
  80. 80.
    A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, p. 074103, 2007.Google Scholar
  81. 81.
    A. Jamshidi, A. T. Ohta, J. K. Valley, H. Y. Hsu, S. L. Neale, and M. C. Wu, “Optofluidics and optoelectronic tweezers,” in Proceedings of the SPIE, 2008.Google Scholar
  82. 82.
    V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE Journal Of Selected Topics in Quantum Electronics, vol. 12, pp. 15–32, 2006.Google Scholar
  83. 83.
    A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Letters, vol. 7, pp. 394–397, 2007.Google Scholar
  84. 84.
    M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Optics Express, vol. 15, pp. 4530–4535, 2007.Google Scholar
  85. 85.
    R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areasy,” Journal of Molecular Recognition, vol. 17, pp. 151–161, 2004.Google Scholar
  86. 86.
    D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluid, vol. 4, pp. 33–52, 2008.Google Scholar
  87. 87.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”,J. Phys. Chem. B, vol. 107, pp 668–677, 2003.Google Scholar
  88. 88.
    K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, pp. 1667–1670, 1997.Google Scholar
  89. 89.
    S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, pp. 1102–1106, 1997.Google Scholar
  90. 90.
    L. Tong, M. Righini, M. U. Gonzalez, R. Quidantbc, and M. Kall, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab on a Chip, vol. 9, pp. 193–195, 2009.Google Scholar
  91. 91.
    K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Optics Letters, vol. 19, pp. 930–932, 1994.Google Scholar
  92. 92.
    P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Letters, vol. 5, pp. 1937–1942, 2005.Google Scholar
  93. 93.
    Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Optics Letters, vol. 31, pp. 2429–2431, 2006.Google Scholar
  94. 94.
    L. Zheng, S. Li, J. P. Brody, and P. J. Burke, “Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis,” Langmuir, vol. 20, pp. 8612–8619, 2004.Google Scholar
  95. 95.
    A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution”, APL, vol. 86, pp. 093109, 2005.Google Scholar
  96. 96.
    E. Ewen Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach Wiley, 2005.Google Scholar
  97. 97.
    R. L. McCreery, Raman Spectroscopy for Chemical Analysis Wiley-Interscience, 2000.Google Scholar
  98. 98.
    W. Yang, J. Hulteen, G. C. Schatz, and R. P. V. Duyne, “A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory,” The Journal of Chemical Physics, vol. 104, pp. 4313–4323, 1996.Google Scholar
  99. 99.
    N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Letters, vol. 7, pp. 941–945, 2007.Google Scholar
  100. 100.
    H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proceedings of the National Academy of Sciences, vol. 102, pp. 15752–15756, 2005.Google Scholar
  101. 101.
    N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mechanics & Chemistry of Biosystems, vol. 2, pp. 17–25, 2005.Google Scholar
  102. 102.
    A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Applied Physics B: Lasers and Optics, vol. 81, pp. 1015–1047, 2005.Google Scholar
  103. 103.
    S. A. Johnson and T. Hunter, “Kinomics: methods for deciphering the kinome,” Nature Methods, vol. 2, pp. 17–25, 2005.Google Scholar
  104. 104.
    P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nature Genetics, vol. 21, pp. 33–37, 1999.Google Scholar
  105. 105.
    M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, pp. 467–470, 1995.Google Scholar
  106. 106.
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, vol. 7, pp. 442–453, 2008.Google Scholar
  107. 107.
    M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897–1899, 2001.Google Scholar
  108. 108.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, pp. 654–657, 2003.Google Scholar
  109. 109.
    P. Yang, “The chemistry and physics of semiconductor nanowires,” MRS Bulletin, vol. 30, pp. 85–91, 2005.Google Scholar
  110. 110.
    B. Sun, A. T. Findikoglu, M. Sykora, D. J. Werder, and V. I. Klimov, “Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon,” Nano Letters, vol. 9, pp. 1235–1241, 2009.Google Scholar
  111. 111.
    R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ““Dip-Pen” nanolithography,” Science, vol. 283, pp. 661–663, 1999.Google Scholar
  112. 112.
    K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nature Nanotechnology, vol. 145, pp. 145–155, 2007.Google Scholar
  113. 113.
    B. Basnar and I. Willner, “Dip-Pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces,” Small, vol. 5, p. 28, 2009.Google Scholar
  114. 114.
    D. S. Ginger, H. Zhang, and C. A. Mirkin, “The evolution of Dip-Pen nanolithography,” Angewandte Chemie (International ed. in English), vol. 43, p. 30, 2004.Google Scholar
  115. 115.
    B. Li, C. F. Goh, X. Zhou, G. Lu, H. Tantang, Y. Chen, C. Xue, F. Y. C. Boey, and H. Zhang, “Patterning colloidal metal nanoparticles for controlled growth of carbon nanotubes,” Advanced Materials, vol. 20, pp. 4873–4878, 2008.Google Scholar
  116. 116.
    H. T. Wang, O. A. Nafday, J. R. Haaheim, E. Tevaarwerk, N. A. Amro, R. G. Sanedrin, C. Y. Chang, F. Ren, and S. J. Pearton, “Toward conductive traces: Dip Pen nanolithography of silver nanoparticle-based inks,” Applied Physics Letters, vol. 93, p. 143105, 2008.Google Scholar
  117. 117.
    J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” The Journal of Physical Chemistry. B, vol. 103, pp. 3854–3863, 1999.Google Scholar
  118. 118.
    J. H. Ahn, H. S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous Three-dimensional electronics by use of printed semiconductor nanomaterials,” Science, vol. 314, pp. 1754–1757, 2006.Google Scholar
  119. 119.
    Z. Fan, J. C. Ho, Z. A. Jacobson, R. Roie Yerushalmi, R. L. Alley, H. Razavi, and A. Ali Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Letters, vol. 8, pp. 20–25, 2008.Google Scholar
  120. 120.
    H. X. He, Q. G. Li, Z. Y. Zhou, H. Zhang, W. Huang, S. F. Y. Li, and Z. F. Liu, “Fabrication of microelectrode arrays using microcontact printing,” Langmuir, vol. 16, p. 9683, 2000.Google Scholar
  121. 121.
    Y. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Material Science, vol. 28, p. 153, 1998.Google Scholar
  122. 122.
    R. Yerushalmi, J. C. Ho, Z. A. Jacobson, and A. Javey, “Generic nanomaterial positioning by carrier and stationary phase design,” Nano Letters, vol. 7, pp. 2764–2768, 2007.Google Scholar
  123. 123.
    E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, “Drying-mediated self-assembly of nanoparticles,” Nature, vol. 426, pp. 271–274, 2003.Google Scholar
  124. 124.
    C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science, vol. 277, pp. 1978–1981, 1997.Google Scholar
  125. 125.
    R. C. Hayward, D. A. Saville, and I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature, vol. 404, pp. 56–59, 2000.Google Scholar
  126. 126.
    S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab on a Chip, vol. 8, pp. 1879–1882, 2008.Google Scholar
  127. 127.
    P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nature Materials, vol. 5, pp. 97–101, 2006.Google Scholar
  128. 128.
    S. Ito, H. Yoshikawa, and H. Masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Applied Physics Letters, vol. 78, pp. 2566–2568, 2001.Google Scholar
  129. 129.
    B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Optics Express, vol. 16, pp. 17276–17281, 2008.Google Scholar
  130. 130.
    Nanopartz, “Nanopartz accurate spherical gold nanoparticles,” 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations