The Role of Bacterial Biofilms in Infections of Catheters and Shunts

  • Trine Rolighed Thomsen
  • Luanne Hall-Stoodley
  • Claus Moser
  • Paul Stoodley


Catheters and shunts are tubes which are used to manage the flow of fluids into, within, and out of the body. Intravascular catheters deliver fluids and medications directly into the bloodstream, while urinary catheters drain waste fluids. In some cases devices such as cerebral ventricular shunts drain fluid from the brain, to another part of the body, such as the heart or stomach where the fluids are processed internally.


  1. Aslam S (2008) Effect of antibacterials on biofilms. Am J Infect Control 36:S175.e179–S175.e111Google Scholar
  2. Blot F, Nitenberg G, Chachaty E, Raynard B, Germann N, Antoun S, Laplanche A, Brun-Buisson C, Tancrede C (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354:1071–1077CrossRefPubMedGoogle Scholar
  3. Bouza E, Burillo A, Munoz P (2002) Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect 8:265–274CrossRefPubMedGoogle Scholar
  4. Bouza E, San Juan R, Munoz P, Pascau J, Voss A, Desco M (2004) A European perspective on intravascular catheter-related infections report on the microbiology workload, aetiology and antimicrobial susceptibility (ESGNI-005 Study). Clin Microbiol Infect 10:838–842CrossRefPubMedGoogle Scholar
  5. Brady R, Leid J, Kofonow J, Costerton J, Shirtliff M (2007) Immunoglobulins to surface-associated biofilm immunogens provide a novel means of visualization of methicillin-resistant Staphylococcus aureus biofilms. Appl Environ Microbiol 73:6612–6619CrossRefPubMedGoogle Scholar
  6. Chatzinikolaou I, Hanna H, Hachem R, Alakech B, Tarrand, J, Raad I (2004) Differential quantitative blood cultures for the diagnosis of catheter-related bloodstream infections associated with short- and long-term catheters: a prospective study. Diagn Microbiol Infect Dis 50:167–172CrossRefPubMedGoogle Scholar
  7. Cicalini S, Palmieri F, Noto P, Boumis E, Petrosillo N (2002) Diagnosis of intra vascular catheter-related infection. J Vasc Access 3:114–119PubMedGoogle Scholar
  8. Conen A, Walti L, Merlo A, Fluckiger U, Battegay M, Trampuz A (2008) Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis 47:73–82CrossRefPubMedGoogle Scholar
  9. Cormican M (2003) Device-associated infection: the biofilm-related problem in health care. In: Lens P, Moran AP, Mahony T, Stoodley P, O’Flaherty V (ed) Biofilms in medicine, industry and environmental biotechnology, IWA Publishing, London, UKGoogle Scholar
  10. Davis L, Cook G, Costerton J (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379CrossRefPubMedGoogle Scholar
  11. DesJardin J, Falagas M, Ruthazer R, Griffith J, Wawrose D, Schenkein D, Miller K, Snydman D (1999) Clinical utility of blood cultures drawn from indwelling central venous catheters in hospitalized patients with cancer. Ann Intern Med 131:641–647PubMedGoogle Scholar
  12. Diskin C, Stokes T, Dansby L, Radcliff L, Carter T (2007) Is systemic heparin a risk factor for catheter-related sepsis in dialysis patients? An evaluation of various biofilm and traditional risk factors. Nephron Clin Pract 107:22CrossRefGoogle Scholar
  13. Donlan R (2001a). Biofilms and device-associated infections. Emerg Infect Dis 7:277–281CrossRefPubMedGoogle Scholar
  14. Donlan R (2001b). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392CrossRefPubMedGoogle Scholar
  15. Doshi R, Patel G, Mackay R, Wallach F (2009) Healthcare-associated Infections: epidemiology, prevention, and therapy. Mt Sinai J Med 76:84–94CrossRefPubMedGoogle Scholar
  16. Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491CrossRefPubMedGoogle Scholar
  17. Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms – a diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1:667–683CrossRefPubMedGoogle Scholar
  18. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40CrossRefPubMedGoogle Scholar
  19. Getliffe K (2003) Managing recurrent urinary catheter blockage: Problems, promises, and practicalities. J WOCN 30:146–151CrossRefGoogle Scholar
  20. Gorman SP, Jones DS (2003) Biofilm complications of urinary tract devices. In: Wilson M, Devine D (eds) Medical implications of biofilm. Cambridge university press, Cambridge, pp 136–170CrossRefGoogle Scholar
  21. Gray M (2001) Managing urinary encrustation in the indwelling catheter. J WOCN 28:226–229CrossRefGoogle Scholar
  22. Ha U, Cho Y (2006) Catheter-associated urinary tract infections: new aspects of novel urinary catheters. Int J Antimicrob Agents 11:11Google Scholar
  23. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 6:6Google Scholar
  24. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiol 2:95–108CrossRefGoogle Scholar
  25. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Stoodley P, Post JC, Ehrlich GD, Kerschner J (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211CrossRefPubMedGoogle Scholar
  26. Jaffe R., Lane J, Bates C (2001) Real-time identification of Pseudomonas aeruginosa direct from clinical samples. J Clin Lab Anal 15:131–137CrossRefPubMedGoogle Scholar
  27. Juretschko S, Loy A, Lehner A, Wagner M (2002) The microbial community composition of a nitrifying-dentrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. J Syst Appl Microbiol 25:84–99CrossRefGoogle Scholar
  28. Kiran M, Giacometti A, Cirioni O, Balaban N (2008) Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs 31:761–770PubMedGoogle Scholar
  29. Kirketerp-Moller K, Jensen P, Fazli M., Madsen K, Pedersen J, Moser C, Tolker-Nielsen T, Givskov M, Bjarnsholt T (2008) The distribution, organization and ecology of bacteria in chronic wounds. J Clin Microbiol 46(8): 2717–22Google Scholar
  30. Lau S, Woo P, Woo G, Yuen K (2002) Catheter-related Microbacterium bacteremia identified by 16S rRNA gene sequencing. J Clin Microbiol 40:2681–2685CrossRefPubMedGoogle Scholar
  31. Leake J, Dowd S, Wolcott R, Zischkau A (2009) Identification of yeast in chronic wounds using new pathogen-detection technologies. J Wound Care 18:103–108PubMedGoogle Scholar
  32. Leroy M, Cabral H, Figueira M, Bouchet V, Huot H, Ram S, Pelton SI, Goldstein R (2007) Multiple consecutive lavage samplings reveal greater burden of disease and provide direct access to the nontypeable Haemophilus influenzae biofilm in experimental otitis media. Infect Immun 75:4158–72Google Scholar
  33. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56CrossRefPubMedGoogle Scholar
  34. Liedl B (2001) Catheter-associated urinary tract infections. Curr Opin Urol 11:75–79CrossRefPubMedGoogle Scholar
  35. Linde HJ, Hahn J, Holler E, Reischl U, Lehn N (2002) Septicemia due to Acinetobacter junii. J Clin Microbiol 40:2696–2697CrossRefPubMedGoogle Scholar
  36. Machado J, Suen V, Figueiredo J, Marchini J (2009) Biofilms, Infection, and Parenteral Nutrition Therapy. J Parenter Enteral Nutr 33(4):397–403Google Scholar
  37. Maki D, Tambyah P (2001) Engineering out the Risk of Infection with Urinary Catheters. Emerg Infect Dis 7(2):342–347Google Scholar
  38. Maki D, Weise C, Sarafin H (1977) A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 296:1305–1309CrossRefPubMedGoogle Scholar
  39. Marcus R, Post J, Stoodley P, Hall-Stoodley L, McGill R, Sureshkumar K, Gahlot V (2008) Biofilms in nephrology. Expert Opin Biol Ther 8:1159–1166CrossRefPubMedGoogle Scholar
  40. Marie T, Costerton J (1984) Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. SJ Clin Microbiol 19:687–693Google Scholar
  41. Marie T, Noble M, Costerton J (1983) Examination of the morphology of bacteria adhering to peritoneal dialysis catheters by scanning and transmission electron microscopy. J Clin Microbiol 18:1388–1398Google Scholar
  42. Mermel L, Farr B, Sherertz R, Raad I, O’Grady N, Harris J, Craven D (2001) Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32:1249–1272CrossRefPubMedGoogle Scholar
  43. Murga R, Miller JM, Donlan RM (2001) Biofilm formation by Gram-negative bacteria on central venous catheter connectors: Effect of conditioning films in a laboratory model. J Clin Microbiol 39:2294–2297CrossRefPubMedGoogle Scholar
  44. Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718CrossRefPubMedGoogle Scholar
  45. Neut D, van der Mei H, Bulstra S, Busscher H (2007) The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthop 78:299–308CrossRefPubMedGoogle Scholar
  46. Nielsen M, Thomsen TR, Moser C, Hoiby N, Nielsen PH (2008). Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study. BMC Clin Pathol 8Google Scholar
  47. Nickel J, Emtage J, Costerton J (1985) Ultrastructural microbial ecology of infection-induced urinary stones. J Urol 133(4):622–7Google Scholar
  48. Nistico L, Gieseke A, Stoodley P, Hall-Stoodley L, Kerschner JE, Ehrlich GD (2009) Fluorescence in-situ hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. In: Sokolowski B (eds) Auditory and vestibular research methods and protocols. The Humana Press, Totowa, NJ, pp 191–215CrossRefGoogle Scholar
  49. Ott S, El Mokhtari N, Rehman A, Rosenstiel P, Hellmig S, Kuhbacher T, Lins M, Simon R, Schreiber S (2007) Fungal rDNA signatures in coronary atherosclerotic plaques. Environ Microbiol 9:3035–3045CrossRefPubMedGoogle Scholar
  50. Ott S, El Mokhtari N, Musfeldt M, Hellmig S, Freitag S, Rehman A, Kuhbacher T, Nikolaus S, Namsolleck P, Blaut M, Hampe J, Sahly H, Reinecke A, Haake N, Gunther R, Kruger D, Lins M, Herrmann G, Folsch U, Simon R, Schreiber S (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937CrossRefPubMedGoogle Scholar
  51. Park J, Cho Y, Kwon I, Jeong S, Bae Y (2002) Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials 23:3991–4000CrossRefPubMedGoogle Scholar
  52. Parsek M, Singh P (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701CrossRefPubMedGoogle Scholar
  53. Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, Osmon DR, McDowell A, Patrick S, Steckelberg JM, Mandrekar JN, Sampedro MF, Patel R (2009) Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol 47(6):1878–1884CrossRefPubMedGoogle Scholar
  54. Post J, Preston R, Aul J, Larkins-Pettigrew M, Rydquist-White J, Anderson K, Wadowsky R, Reagan D, Walker E, Kingsley L, Magit A, Ehrlich G (1995) Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA 273:1598–1604CrossRefPubMedGoogle Scholar
  55. Pourrezaei K, Shvets I, DeLaurentis M, Boxman R, Beard R, Croitoriu N, Mukhtar M, Logan D, Rastogi R (1994) Development of antimicrobial and antithrombogenic coatings for inside and outside of medical catheters. Surface Coastings Technol 68:669–674CrossRefGoogle Scholar
  56. Rayner MG, Zhang Y, Gorry MC, Chen Y, Post, JC, Ehrlich GD (1998) Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA 279:296–299CrossRefPubMedGoogle Scholar
  57. Rodríguez-Baño J, Martí S, Soto S, Fernández-Cuenca F, Cisneros JM, Pachón J, Pascual A, Martínez-Martínez L, McQueary C, Actis LA, Vila J (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infec14:276–278CrossRefGoogle Scholar
  58. Sabbuba NA, Mahenthiralingam E, Stickler DJ (2003) Molecular Epidemiology of Proteus mirabilis Infections of the Catheterized Urinary Tract. J Clin Microbiol 41:4961–4965CrossRefPubMedGoogle Scholar
  59. Safdar N, Maki DG (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 30:62–67CrossRefPubMedGoogle Scholar
  60. Safdar N, Kluger D, Maki D (2002) A Review of Risk Factors for Catheter-Related Bloodstream Infection Caused by Percutaneously Inserted, Noncuffed Central Venous Catheters: Implications for Preventive Strategies. Medicine 81:466–479CrossRefPubMedGoogle Scholar
  61. Sakamoto M, Rocas I, Siqueira J Jr, Benno Y (2006) Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol Immunol 21:112–122CrossRefPubMedGoogle Scholar
  62. Schinabeck M, Ghannoum M (2003) Catheter-related infections – diagnosis, treatment and prevention. Clin Microbiol Newslett 25:113–118CrossRefGoogle Scholar
  63. Selan L, Passariello C, Rizzo L, Varesi P, Speziale F, Renzini G, Thaller M, Fiorani P, Rossolini G (2002) Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Lancet 359:2166–2168CrossRefPubMedGoogle Scholar
  64. Shanks RMQ, Sargent JL, Martinez RM, Graber ML, O’Toole GA (2006) Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. doi: 10.1093/ndt/gfl170. Nephrol Dial Transplant 21:2247–2255CrossRefPubMedGoogle Scholar
  65. Sherertz R (2004) Update on vascular catheter infections. Curr Opin Infect Dis 17:303–307CrossRefPubMedGoogle Scholar
  66. Slobbe L, El Barzouhi A, Boersma E, Rijnders BJ (2009) Comparison of the roll plate and sonication method to diagnose catheter colonisation and bacteraemia in patients with long-term tunnelled catheters. A randomised prospective study. J Clin Microbiol 47(4):885–888CrossRefPubMedGoogle Scholar
  67. Smuszkiewicz P, Trojanowska I, Tomczak H (2009) Venous catheter microbiological monitoring. Necessity or a habit? Med Sci Monit 15:SC5–8Google Scholar
  68. Spencer R (1999) Novel methods for the prevention of infection of intravascular devices. J Hosp Infect 43:S127–135CrossRefGoogle Scholar
  69. Starkey M, Hickman J, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits M, Starner T, Wozniak D, Harwood, C, Parsek M (2009) Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung. J Bacteriol 191(11):3492–503Google Scholar
  70. Stickler DJ (2008) Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5:598–608Google Scholar
  71. Stoodley P, Nistico L, Johnson S, Carabin L-A, Baratz M, Gahlot V, Ehrlich GDE, Kathju S (2008) Direct demonstration of viable S. aureus biofilms in an infected total joint arthroplasty. JBJS 90:1751–1758Google Scholar
  72. Storti A, Pizzolitto AC, Pizzolitto EL (2005) Detection of mixed microbial biofilms on central venous catheters removed from Intensive care Unit Patients. Brazilian J Microbiol 36 275–280Google Scholar
  73. Tenover F (2007) Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Med Microbiol 44:418–423Google Scholar
  74. Thomsen TR, Ramsing NB, Finster K (2001) Biogeochemical and Molecular Signatures of Anaerobic Methane Oxidation in a Marine Sediment. Appl Environ Microbiol 67:1646–1656CrossRefPubMedGoogle Scholar
  75. Timsit J (2007) Diagnosis and prevention of catheter-related infections. Curr Opin Crit Care 13:563–571CrossRefPubMedGoogle Scholar
  76. Trampuz A, Piper K, Jacobson M, Hanssen A, Unni K, Osmon D, Mandrekar J, Cockerill F, Steckelberg J, Greenleaf J, Patel R (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357:654–663CrossRefPubMedGoogle Scholar
  77. Trautner B, Darouiche R (2004) Catheter-associated infections: pathogenesis affects prevention. Arch Intern Med 164:842–850CrossRefPubMedGoogle Scholar
  78. Tunney M, Patrick S, Curran M, Ramage G, Hanna D, Nixon J, Gorman S, Davis R, Anderson N (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 37:3281–3290PubMedGoogle Scholar
  79. Wang K, Chang W, Shih T, Huang C, Tsai N, Chang C, Chuang Y, Liliang P, Su T, Rau C., Tsai Y, Cheng B, Hung P, Chang C, Lu C (2004) Infection of cerebrospinal fluid shunts: causative pathogens, clinical features, and outcomes. Jpn J Infect Dis 57:44–48PubMedGoogle Scholar
  80. Warwick S, Wilks M, Hennessy E, Powell-Tuck J, Small M, Sharp J, Millar M (2004) Use of quantitative 16S ribosomal DNA detection for diagnosis of central vascular catheter-associated bacterial infection. J Clin Microbiol 42:1402–1408CrossRefPubMedGoogle Scholar
  81. Wilson M (2009) Biofilm and other causes of pain in catheterization. Br J Community Nurs 14:102–113PubMedGoogle Scholar
  82. Woo PC, Tsoi HW, Leung KW, Lum PN, Leung AS, Ma CH, Kam KM, Yuen KY (2000) Identification of Mycobacterium neoaurum isolated from a neutropenic patient with catheter-related bacteremia by 16S rRNA sequencing. J Clin Microbiol 38:3515–3517PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Trine Rolighed Thomsen
    • 1
    • 2
  • Luanne Hall-Stoodley
    • 3
  • Claus Moser
    • 4
  • Paul Stoodley
    • 5
  1. 1.Department of Biotechnology, Chemistry, and Environmental EngineeringAalborg UniversityAalborgDenmark
  2. 2.Life Science divisionThe Danish Technological InstituteÅrhus CDenmark
  3. 3.Wellcome Trust Clinical Research Facility, U Southampton Faculty of Medicine, Southampton NIHR Respiratory BRU, Division of Infection, Inflammation and ImmunitySouthampton University Hospitals NHS Trust, University of SouthamptonSouthamptonUK
  4. 4.Department for Clinical MicrobiologyH:S RigshospitaletCopenhagen ØDenmark
  5. 5.National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering SciencesUniversity of Southampton, HighfieldSouthamptonUK

Personalised recommendations