Biosurfactants pp 158-169 | Cite as

Molecular Engineering Aspects for the Production of New and Modified Biosurfactants

  • Alexander Koglin
  • Volker Doetsch
  • Frank BernhardEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)


Biosurfactants are of considerable industrial value as their high tenside activity in combination with their biocompatibility makes them attractive for many applications. In particular members of the lipopeptide family of biosurfactants contain significant potentials for the pharmaceutical industry due to their intrinsic antibiotic characteristics. The high frequency of lipopeptide (LP) production in common soil microorganisms in combination with the enormous structural diversity of the synthesized biosurfactants has created an abundant natural pool of compounds with potentially interesting properties. Unfortunately, the bioactivity of lipopetides against pathogenic microorganisms is often associated with problematic side effects that restrict or even prevent medically relevant applications. The accumulated knowledge of lipopetide biosynthesis and their frequent structural variations caused by natural genetic rearrangements has therefore motivated numerous approaches in order to manipulate biosurfactant composition and production mechanisms. This chapter will give an overview on current engineering strategies that aim to obtain lipopeptide biosurfactants with redesigned structures and optimized properties.


Chem Biol Nonribosomal Peptide Synthetase Adenylation Domain Grow Peptide Chain NRPS Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mulligan CN. Environmental applications for biosurfactants. Environ Pollution 2005; 133:183–98.CrossRefGoogle Scholar
  2. 2.
    Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiol 2007; 16:115–25.CrossRefGoogle Scholar
  3. 3.
    Rodrigues L, Banat IM, Teixeira J et al. Biosurfactants: potential applications in medicine. J Antimicrob Agents 2006; 57:609–18.CrossRefGoogle Scholar
  4. 4.
    Doekel S, Marahiel MA. Biosynthesis of natural products on modular peptide synthetases. Metabolic Engin 2001; 3:64–77.CrossRefGoogle Scholar
  5. 5.
    Marahiel MA, Stachelhaus T, Mootz HD. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 1997; 97:2651–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Mootz HD, Marahiel MA. Design and application of multimodular peptide synthetases. Curr Opin Biotechnol 1999; 10:341–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Schwarzer D, Finking R, Marahiel MA. Nonribosomal pepides: from genes to products. Nat Prod Rep 2003; 20:275–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Duitman EH, Hamoen LW, Rembold M et al. The mycosubtilin synthetase of bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase and a fatty acid synthase. Proc Natl Acad Sci USA 1999; 96:13294–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Mootz HD, Marahiel MA. Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr Opin Chem Biol 1997; 1:543–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Pryor SW, Gibson DM, Hay AG et al. Optmization of spore and antifungal lipopeptide production during the solid-state fermentation of bacillus subtilis. Appl Biochem Biotechnol 2007; 143:63–79.CrossRefPubMedGoogle Scholar
  11. 11.
    Huber FM, Pieper RL, Tietz AJ. The formation of daptomycin by supplying decanoic acid to streptomyces roseosporus cultures producing the antibiotic complex A21978C. J Biotechnol 1988; 7:283–92.CrossRefGoogle Scholar
  12. 12.
    Guenzi E, Galli G, Grgurina I et al. Characterization of the syringomycin synthetase gene cluster. A link betweem prokaryotic and eukaryotic peptide synthetases. J Biol Chem 1998; 273:32857–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Amir-Heidari B, Thirlway J, Micklefield J. Auxotrophic-precursor directed biosynthesis of nonribosomal lipopeptides with modified tryptophan residues. Org Biomol Chem 2008; 6:975–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Powell A, Borg M, Amir-Heidari B et al. Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. J Am Chem Soc 2007; 129:15182–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Baltz RH. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol 2006; 24:1533–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Bonmatin JM, Labbé H, Grangemard I et al. Production, isolation and characterization of [Leu4]-and [Ile4] surfactins from bacillus subtilis. Letts Peptide Sci 1995; 1:41–7.CrossRefGoogle Scholar
  17. 17.
    Mulligan CN, Yong RN, Gibbs BF et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci Technol 1999; 33:3812–20.CrossRefGoogle Scholar
  18. 18.
    Koglin A, Löhr F, Bernhard F et al. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature 2008; 454:907–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Steller S, Sokoll A, Wilde C et al. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry 2004; 43:11331–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Cane DE, Walsh CT. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 1999; 319–25.Google Scholar
  21. 21.
    Stachelhaus T, Mootz HD, Marahiel MA The specificity code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 1999; 6:493–505.CrossRefPubMedGoogle Scholar
  22. 22.
    De Ferra F, Rodriguez F, Tortora O et al. Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem 1997; 272:25304–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Stachelhaus T, Schneider A, Marahiel MA. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 1995; 269:69–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Schneider A, Stachelhaus T, Marahiel MA. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol Gen Genet 1998; 257:308–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Elsner A, Engert H, Saenger W et al. Substrate specificity of hybrid modules from peptide synthetases. J Biol Chem 1997; 272:4814–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Symmank H, Saenger W, Bernhard F. Analysis of engineered multifunctional peptide synthetases: enzymatic characterization of surfactin synthetase domains in hybrid bimodular systems. J Biol Chem 1999; 274:21581–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 2005; 22:717–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Miao V, Coeffet-Le Gal MF, Nguyen K et al. Genetic engineering in streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem Biol 2006; 13:269–76.CrossRefPubMedGoogle Scholar
  29. 29.
    Nguyen KT, Ritz D, Gu JQ et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci USA 2006; 103:17462–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Coeffet-Le Gal MF, Thurson I, Rich P et al. Complementation of daptomycin dptA and dptD deletion mutants in trans and production of hybrid lipopeptide antibiotics. Microbiology 2006; 152:2993–3001.CrossRefPubMedGoogle Scholar
  31. 31.
    Stein DB, Linne U, Marahiel MA. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. FEBS J 2005; 272:4506–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Frueh DP, Arthanari H, Koglin A et al. Dynamic thiolation-thioesterase structure of a nonribosomal peptide synthetase. Nature 2008; 454:903–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu N, Cane DE, Khosla C. Quantitative analysis of the relative contributions of donor acyl carrier proteins, acceptor ketosynthases and linker regions to intermodular transfer of intermediates in hybrid polyketide synthases. Biochemistry 2002; 41:5056–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Bruner SD, Weber T, Kohli RM et al. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 2002; 10:301–10.CrossRefPubMedGoogle Scholar
  35. 35.
    Samel SA, Wagner B, Marahiel MA et al. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a nonribosomal lipopeptide. J Mol Biol 2006; 359:876–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Koglin A, Mofid MR, Löhr F et al. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 2006; 312:273–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Alekseyev VY, Liu CW, Cane DE et al. Solution structure and proposed domain domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. Protein Sci 2007; 16:2093–107.CrossRefPubMedGoogle Scholar
  38. 38.
    Johnson MA, Peti W, Herrmann T et al. Solution structure of Asl1650, an acyl carrier protein from anabaena sp. PCC 7120 with a variant phosphopantetheinylation-site sequence. Protein Sci 2006; 15:1030–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Drake EJ, Nicolai DA, Gulick AM. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Chem Biol 2006; 4:409–19.CrossRefGoogle Scholar
  40. 40.
    Samel SA, Schoenafinger G, Knappe TA et al. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 2007; 15:781–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Tanovic A, Samel SA, Essen LO et al. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 2008; 321:659–63.CrossRefPubMedGoogle Scholar
  42. 42.
    Jenni S, Leibundgut M, Boehringer D et al. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 2007; 316:254–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Leibundgut M, Jenni S, Frick C et al. Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science 2007; 316:288–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Hahn M, Stachelhaus T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci USA 2004; 101:15585–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Hahn M, Stachelhaus T. Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. Proc Natl Acad Sci USA 2006; 103:275–80.CrossRefPubMedGoogle Scholar
  46. 46.
    Chiocchini C, Linne U, Stachelhaus T. In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. Chem Biol 2006; 13:899–908.CrossRefPubMedGoogle Scholar
  47. 47.
    Eisenmesser EZ, Millet O, Labeikovsky W et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 2005; 438:117–21.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Alexander Koglin
    • 1
  • Volker Doetsch
    • 2
  • Frank Bernhard
    • 2
    Email author
  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  2. 2.Centre for Biomolecular Magnetic ResonanceGoethe-University of Frankfurt/Main, Institute for Biophysical ChemistryFrankfurt/MainGermany

Personalised recommendations