Advertisement

Kinetic Models for Cancer Imaging

  • V. J. Schmidvolker
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 680)

Abstract

As tumors have distinctly different blood flow compared to that of normal tissue, the kinetic in cancerous tissue is of importance in cancer diagnosis and in assessing the efficacy of treatment. To this end, dynamic cancer imaging provides a noninvasive way for early detection of tumors and subsequent treatment planning. This paper provides an overview of currently available imaging modalities and compares different kinetic models used for analyzing tumor scans. Specific research issues that arise when analyzing dynamic imaging scans are examined and current developments in the field are highlighted.

Keywords

Cancer imaging Detection of tumors Imaging modalities Kinetic models MRI PET SPECT 

References

  1. 1.
    R. A. Hawkins and M. E. Phelps, “PET in clinical oncology,” Cancer Metastasis Rev, vol. 7, no. 2, pp. 119–142, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    K. Yutani, et al., “Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis,” J Comput Assist Tomogr, vol. 24, no. 2, pp. 274–280, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    H. Gries, “Extracellular MRI contrast agents based on gadolinium,” In Contrast Agents I, Berlin, Springer, pp. 1–24, 2002.Google Scholar
  4. 4.
    G. J. M. Parker and A. R. Padhani, “T1-w DCE-MRI: T1-weighted dynamic contrast-enhanced MRI,” In Quantitative MRI of the Brain, P. Tofts (Ed.), Chichester, Wiley, pp. 341–364, 2003.CrossRefGoogle Scholar
  5. 5.
    J. P. Delille, et al., “Invasive ductal breast carcinoma response to neoadjuvant chemotherapy: noninvasive monitoring with functional MR imaging – Pilot study,” Radiology, vol. 228, pp. 63–69, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    N. S. Akella, et al., “Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial,” J Magn Reson Imaging, vol. 20, no. 6, pp. 913–922, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    E. T. Petersen, et al., “Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques,” Br J Radiol, vol. 79, no. 944, pp. 688–701, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    V. Goh and A. Padhani, “Imaging tumor angiogenesis: functional assessment using MDCT or MRI?,” Abdominal Imaging, vol. 31, no. 2, pp. 194–199, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    P. S. Tofts, et al., “Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer,” J Magn Reson Imaging, vol. 10, pp. 223–232, 1999.PubMedCrossRefGoogle Scholar
  10. 10.
    S. Kety, “Blood-tissue exchange methods. Theory of blood-tissue exchange and its applications to measurement of blood flow,” Methods Med Res, vol. 8, pp. 223–227, 1960.Google Scholar
  11. 11.
    R. A. Koeppe, J. E. Holden, and W. R. Ip, “Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography,” J Cereb Blood Flow Metab, vol. 5, no. 2, pp. 224–234, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    H. B. Larsson and P. S. Tofts, “Measurement of the blood–brain barrier permeability and leakage space using dynamic Gd-DTPA scanning – a comparison of methods,” Magn Reson Med, vol. 24, no. 1, pp. 174–176, 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    V. J. Cunningham and T. Jones, “Spectral analysis of dynamic PET studies,” J Cereb Blood Flow Metab, vol. 13, pp. 15–23, 1993.PubMedCrossRefGoogle Scholar
  14. 14.
    K. S. St. Lawrence and T-Y. Lee, “An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation,” J Cereb Blood Flow Metab, vol. 18, pp. 1365–1377, 1998.PubMedCrossRefGoogle Scholar
  15. 15.
    C. Landis, et al., “Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange,” Magn Reson Med, vol. 44, pp. 567–574, 2000.CrossRefGoogle Scholar
  16. 16.
    X. Fan, et al., “New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors,” Magn Reson Med, vol. 51, no. 3, pp. 487–494, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    V. J. Schmid, et al., “Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines,” IEEE Trans Med Imaging, vol. 28, pp. 789–798, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magn Reson Med, vol. 34, no. 6, pp. 910–914, 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    T. S. Ahearn, et al., “The use of the Levenberg–Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI,” Phys Med Biol, vol. 50, pp. N85–N92, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    M. A. Horsfield and B. Morgan, “Algorithms for calculation of kinetic parameters from T1-weighted dynamic contrast-enhanced magnetic resonance imaging,” J Magn Reson Imaging, vol. 20, pp. 723–729, 2004.PubMedCrossRefGoogle Scholar
  21. 21.
    V. J. Schmid, et al., “Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging,” IEEE Trans Med Imaging, vol. 25, pp. 1627–1636, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    C. S. Patlak, et al., “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data,” J Cereb Blood Flow Metab, vol. 3, pp. 1–7, 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    K. Murase, “Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging,” Magn Reson Med, vol. 51, pp. 858–862, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    A. L. Martel, “A fast method of generating pharmacokinetic maps from dynamic contrast-enhanced images of the breast,” In MICCAI 2006, R, Larsen, M. Nielsen, J. Sporring (Eds.), Berlin, Springer, pp. 101–108.Google Scholar
  25. 25.
    D. L. Buckley, “Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI,” Magn Reson Med, vol. 47, no. 3, pp. 601–606, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    L. E. Kershaw and D. L. Buckley, “Precision in measurements of perfusion and microvascular permeability with T1-weighted DCE-MRI,” Magn Reson Med, vol. 56, pp. 986–992, 2006.PubMedCrossRefGoogle Scholar
  27. 27.
    R. Walker, J. Paratz, and A. E. Holland, “Reproducibility of the negative expiratory pressure technique in COPD,” Chest, vol. 132, no. 2, pp. 471–476, 2007.PubMedCrossRefGoogle Scholar
  28. 28.
    P. S. Tofts and A. G. Kermode, “Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging,” Magn Reson Med, vol. 17, pp. 357–367, 1991.PubMedCrossRefGoogle Scholar
  29. 29.
    E. Henderson, B. K. Rutt, and T. Y. Lee, “Temporal sampling requirements for the tracer kinetics modeling of breast disease,” Magn Reson Imaging, vol. 16, no. 9, pp. 1057–1073, 1998.PubMedCrossRefGoogle Scholar
  30. 30.
    M. Rijpkema, et al., “Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors,” J Magn Reson Imaging, vol. 14, no. 4, pp. 457–463, 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    H. W. van Laarhoven, et al., “Method for quantitation of dynamic MRI contrast agent uptake in colorectal liver metastases,” J Magn Reson Imaging, vol. 18, no. 3, pp. 315–320, 2003.PubMedCrossRefGoogle Scholar
  32. 32.
    C. Yang, et al., “Multiple reference tissue method for contrast agent arterial input function estimation,” Magn Reson Med, vol. 58, no. 6, pp. 1266–1275, 2007.PubMedCrossRefGoogle Scholar
  33. 33.
    H. J. Weinmann, et al., “Pharmokinetics of Gd-DTPA/Dimeglumine after intravenous injection into healthy volunteers,” Physiol Chem Physics Med NMR, vol. 16, pp. 167–172, 1984.Google Scholar
  34. 34.
    T. Fritz-Hansen, et al., “Measurement of the Arterial Concentration of Gd-DTPA Using MRI: A step toward Quantitative Perfusion Imaging,” Magn Reson Med, vol. 36, pp. 225–231, 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    F. Calamante, D. G. Gadian, and A. Connelly, “Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition,” Magn Reson Med, vol. 44, pp. 466–473, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    L. H. Cheong, T. S. Koh, and Z. Hou, “An automatic approach for estimating bolus arrival time in dynamic contrast MRI using piecewise continuous regression models,” Phys Med Biol, vol. 48, no. 5, pp. N83–N88, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    M. R. Orton, et al., “Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time,” Phys Med Biol, vol. 52, pp. 2393–2408, 2007.PubMedCrossRefGoogle Scholar
  38. 38.
    H. W. Korin, et al., “Adaptive technique for three-dimensional MR imaging of moving structures,” Radiology, vol. 177, no. 1, pp. 217–221, 1990.PubMedGoogle Scholar
  39. 39.
    E. R. Denton, et al., “Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images,” J Comput Assist Tomogr, vol. 23, no. 5, pp. 800–805, 1999.PubMedCrossRefGoogle Scholar
  40. 40.
    G. A. Buonaccorsi, et al., “Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement,” Acad Radiol, vol. 13, no. 9, pp. 1112–1123, 2006.PubMedCrossRefGoogle Scholar
  41. 41.
    V. J. Schmid, et al., “A Bayesian hierarchical model for the analysis of a longitudinal DCE-MRI oncology study,” Magn Reson Med, vol. 61, pp. 163–174, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of StatisticsLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations