Protein Identification Using Receptor Arrays and Mass Spectrometry

  • Timothy R. Langlois
  • Richard W. Vachet
  • Ramgopal R. Mettu
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 680)


Mass spectrometry is one of the main tools for protein identification in complex mixtures. When the sequence of the protein is known, we can check to see if the known mass distribution of peptides for a given protein is present in the recorded mass distribution of the mixture being analyzed. Unfortunately, this general approach suffers from high false-positive rates, since in a complex mixture, the likelihood that we will observe any particular mass distribution is high, whether or not the protein of interest is in the mixture. In this paper, we propose a scoring methodology and algorithm for protein identification that make use of a new experimental technique, which we call receptor arrays, for separating a mixture based on another differentiating property of peptides called isoelectric point (pI). We perform extensive simulation experiments on several genomes and show that additional information about peptides can achieve an average 30% reduction in false-positive rates over existing methods, while achieving very high true-positive identification rates.


Receptor Array Mass Spectrometry Protein Identification Isoelectric Point 



S. Thayumanavan in the Department of Chemistry at UMass Amherst for useful ideas and discussions.


  1. 1.
    B. J. Cargile and J. L. Stephenson Jr. An alternative to tandem mass spectrometry: Isoelectric point and accurate mass for the identification of peptides. Anal. Chem., 76(2):267–275, 2004.PubMedCrossRefGoogle Scholar
  2. 2.
    M. Y. Combariza, E. Savariar, S. Thayumanavan, and R.W. Vachet. Isoelectric point dependent fractionation and detection of protein digests using polymeric nanoassemblies and MALDI-MS analysis. In Proceedings from the 56th ASMS Conference on Mass Spectrometry and Allied Topics, 2008.Google Scholar
  3. 3.
    M. Y. Combariza, E. N. Savariar, D. R. Vutukuri, S. Thayumanavan, and R. W. Vachet. Polymeric inverse micelles as selective peptide extraction agents for MALDI-MS analysis. Anal. Chem., 79(18):124–130, 2007.CrossRefGoogle Scholar
  4. 4.
    R. Craig and R. C. Beavis. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom., 17(20):2310–2316, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Amal S. Essader, Benjamin J. Cargile, Jonathan L. Bundy, and James L. Stephenson. A comparison of immobilized ph gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics. Proteomics, 5:24–34, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel, and A. Bairoch. Expasy: The proteomics server for in-depth protein knowledge and analysis., 2003.
  7. 7.
    L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard, X. Yang, W. Shi, and S. H. Bryant. Open mass spectrometry search algorithm. J. Proteome Res., 3(5):958–964, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    A. Gomez-Escudero, M. A. Azagarsamy, N. Theddu, R. W. Vachet, and S. Thayumanavan. Selective peptide binding using facially amphiphilic dendrimers. J. Am. Chem. Soc., 130(33):11156–11163, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    A. Keller, J. Eng, N. Zhang, X.-J. Li, and R. Aebersold. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol., 1:0017, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    B. MacLean, J. K. Eng, R. C. Beavis, and M. McIntosh. General framework for developing and evaluating database scoring algorithms using the tandem search engine. Bioinformatics, 22(22):2830–2832, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    A. I. Nesvizhskii, O. Vitek, and R. Aebersold. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Meth., 4(10):787–797, 2007.CrossRefGoogle Scholar
  12. 12.
    M. Palmblad, M. Ramström, K. E. Markides, P. H/a kansson, and J. Bergquist. Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry. Anal. Chem., 74(22):5826–5830, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    D. N. Perkins, D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18):3551–3567, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    Peter Rice, Ian Longden, and Alan Bleasby. EMBOSS: The European molecular biology open software suite. Trends Genet., 16(6):276–277, 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    J. R. Yates, J. K. Eng, A. L. McCormack, and D. Schieltz. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in protein database. Anal. Chem., 67(8):1426–1436, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Timothy R. Langlois
  • Richard W. Vachet
  • Ramgopal R. Mettu
    • 1
  1. 1.University of MassachusettsAmherstUSA

Personalised recommendations