Semantic Disclosure in an e-Science Environment

  • M. Scott Marshall
  • Marco Roos
  • Edgar Meij
  • Sophia Katrenko
  • Willem Robert van Hage
  • Pieter W. Adriaans
Part of the Annals of Information Systems book series (AOIS, volume 11)


The Virtual Laboratory for e-Science (VL-e) project serves as a backdrop for the ideas described in this chapter. VL-e is a project with academic and industrial partners where e-science has been applied to several domains of scientific research. Adaptive Information Disclosure (AID), a subprogram within VL-e, is a multi-disciplinary group that concentrates expertise in information extraction, machine learning, and Semantic Web – a powerful combination of technologies that can be used to extract and store knowledge in a Semantic Web framework. In this chapter, the authors explain what “semantic disclosure” means and how it is essential to knowledge sharing in e-Science. The authors describe several Semantic Web applications and how they were built using components of the AIDA Toolkit (AID Application Toolkit). The lessons learned and the future of e-Science are also discussed.


Resource Description Framework Text Mining Query Expansion Grid Resource SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was carried out in the context of the Virtual Laboratory for e-Science project ( This project is supported by a BSIK grant from the Dutch Ministry of Education, Culture, and Science (OC&W) and is part of the ICT innovation program of the Ministry of Economic Affairs (EZ). Special thanks go to Bob Herzberger, who made the VL-e project a reality and to Pieter Adriaans for creating and leading AID. We also thank Edgar Meij, Sophia Katrenko, Willem van Hage, Kostas Krommydas, Machiel Jansen, Marten de Rijke, Guus Schreiber, and Frank van Harmelen. Our VL-e Food Informatics partners: Jeen Broekstra, Fred van de Brug, Chide Groenouwe, Lars Hulzebos, Nicole Koenderink, Dirk Out, Hans Peters, Hajo Rijgersberg, Jan Top. Other VL-e colleagues: Piter de Boer, Silvia Olabarriaga, Adam Belloum, Spiros Koulouzis, Kasper van den Berg, Kamel Boulebiar, Tristan Glatard. Martijn Schuemie, Barend Mons, Erik van Mulligen (Erasmus University and Knew Co.). Simone Louisse for careful reading of this document. Thanks to Alan Ruttenberg and Jonathan Rees of Science Commons for supplying the Huntington’s corpus. We appreciate the support of many colleagues at NBIC, theW3C HCLS IG, myGrid, myExperiment, and OMII-UK.


  1. 1.
    Wang, X., Gorlitsky, R., Almeida, J.S.: From XML to RDF: How semantic web technologies will change the design of ‘omic’ standards. Nature Biotechnology 23 (2005) 1099–1103CrossRefGoogle Scholar
  2. 2.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL Morgan Kaufmann (2008)Google Scholar
  3. 3.
    Stein, L.D.: Towards a cyberinfrastructure for the biological sciences: Progress, visions and challenges. Nature Reviews 9 (2008) 678–688Google Scholar
  4. 4.
    Galperin, M.Y.: The molecular biology database collection: 2008 update. Nucleic Acids Research 36 (2008) D2–D4CrossRefGoogle Scholar
  5. 5.
    Ruttenberg, A., Clark, T., Bug, W., Samwald, M., Bodenreider, O., Chen, H., Doherty, D., Forsberg, K., Gao, Y., Kashyap, V., Kinoshita, J., Luciano, J., Marshall, M.S., Ogbuji, C., Rees, J., Stephens, S., Wong, G.T., Wu, E., Zaccagnini, D., Hongsermeier, T., Neumann, E., Herman, I., Cheung, K.H.: Advancing translational research with the semantic web. BMC Bioinformatics 8(3) (2007) S2CrossRefGoogle Scholar
  6. 6.
    Marshall, M.S., Prud’hommeaux, E.: A Prototype Knowledge Base for the Life Sciences (W3C Interest Group Note). 2008 (2008)Google Scholar
  7. 7.
    Samwald, M., Cheung, K.: Experiences with the conversion of SenseLab databases to RDF/OWL (W3C Interest Group Note). Vol. 2008 (2008)Google Scholar
  8. 8.
    Ruttenberg, A., Rees, J., Samwald, M., Marshall, M.S.: Life sciences on the semantic web: The neurocommons and beyond. Briefings in Bioinformatics 10 (2009) 193–204CrossRefGoogle Scholar
  9. 9.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. The Semantic Web – ISWC 2002: First International Semantic Web Conference, Vol. 2342/2002. Springer, Berlin, Heidelberg, Sardinia, Italy (2002) 54Google Scholar
  10. 10.
    LingPipe 4.0.0. (accessed October 1, 2008)
  11. 11.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)Google Scholar
  12. 12.
    Katrenko, S., Adriaans, P.: Using Semi-Supervised Techniques to Detect Gene Mentions. Second BioCreative Challenge Workshop (2007)Google Scholar
  13. 13.
    Katrenko, S., Adriaans, P.: Learning Relations from Biomedical Corpora Using Dependency Trees. KDECB (Knowledge Discovery and Emergent Complexity in BioInformatics), Vol. 4366 (2006)Google Scholar
  14. 14.
    Koenderink, N.J.J.P., Top, J.L., van Vliet, L.J.: Expert-based ontology construction: A case-study in horticulture. In: Proceedings of the 5th TAKMA Workshop at the DEXA Conference (2005) 383–387Google Scholar
  15. 15.
    Rodgers, S., Busch, J., Peters, H., Christ-Hazelhof, E.: Building a tree of knowledge: Analysis of bitter molecules. Chemical Senses 30 (2005) 547–557CrossRefGoogle Scholar
  16. 16.
    Rodgers, S., Glen, R.C., Bender, A.: Characterizing bitterness: Identification of key structural features and development of a classification model. Journal of Chemical Information and Modeling 46 (2006) 569–576CrossRefGoogle Scholar
  17. 17.
    Smith, S.M.: Overview of fMRI analysis. The British Journal of Radiology 77(2) (2004) S167–S175CrossRefGoogle Scholar
  18. 18.
    Olabarriaga, S.D., Boer, P.T.d., Maheshwari, K., Belloum, A., Snel, J.G., Nederveen, A.J., Bouwhuis, M.: Virtual lab for fMRI: bridging the usability gap. In: Proceedings of the 2nd IEEE International Conference on e-Science and Grid Computing, Amsterdam, Netherlands IEEE Computer Society, Los Alamitos, CA (2006)Google Scholar
  19. 19.
    Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler, D.: The human genome browser at UCSC. Genome Res 12 (2002) 996–1006Google Scholar
  20. 20.
    Thomas, D.J., Rosenbloom, K.R., Clawson, H., Hinrichs, A.S., Trumbower, H., Raney, B.J., Karolchik, D., Barber, G.P., Harte, R.A., Hillman-Jackson, J., Kuhn, R.M., Rhead, B.L., Smith, K.E., Thakkapallayil, A., Zweig, A.S., Haussler, D., Kent, W.J.: The ENCODE project at UC Santa Cruz. Nucleic Acids Research 35 (2007) D663–667CrossRefGoogle Scholar
  21. 21.
    Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41(5) (2008) 706–716Google Scholar
  22. 22.
    Cheung, K.H., Yip, K.Y., Smith, A., Deknikker, R., Masiar, A., Gerstein, M.: YeastHub: a semantic web use case for integrating data in the life sciences domain. Bioinformatics 21(1) (2005) i85–i96CrossRefGoogle Scholar
  23. 23.
    Dhanapalan, L., Chen, J.Y.: A case study of integrating protein interaction data using semantic web technology. International Journal of Bioinformatics Research and Application 3 (2007) 286–302CrossRefGoogle Scholar
  24. 24.
    Lam, H.Y., Marenco, L., Shepherd, G.M., Miller, P.L., Cheung, K.H.: Using web ontology language to integrate heterogeneous databases in the neurosciences. AMIA Annual Symposium Proceedings, Washington, DC (2006) 464–468Google Scholar
  25. 25.
    Marshall, M., Post, L., Roos, M., Breit, T.: Using semantic web tools to integrate experimental measurement data on our own terms. On the move to meaningful internet systems 2006: OTM 2006 Workshops (2006) 679–688Google Scholar
  26. 26.
    Post, L.J., Roos, M., Marshall, M.S., van Driel, R., Breit, T.M.: A semantic web approach applied to integrative bioinformatics experimentation: A biological use case with genomics data. Bioinformatics 23 (2007) 3080–3087CrossRefGoogle Scholar
  27. 27.
    Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB. Commun. ACM 51 (2008) 77–85CrossRefGoogle Scholar
  28. 28.
    Verschure, P.J.: Chromosome organization and gene control: It is difficult to see the picture when you are inside the frame. Journal of Cellular Biochemistry 99 (2006) 23–34CrossRefGoogle Scholar
  29. 29.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34 (2006) W729–W732CrossRefGoogle Scholar
  30. 30.
    Cheung, K.-H., Frost, H.R., Marshall, M.S., Prud’hommeaux, E., Samwald, M., Zhao, J., Paschke, A.: A journey to semantic web query federation in life sciences. BMC Bioinformatics 10 (2009) S10Google Scholar
  31. 31.
    Miyazaki, S., Sugawara, H., Ikeo, K., Gojobori, T., Tateno, Y.: DDBJ in the stream of various biological data. Nucleic Acids Research 32 (2004) D31–34CrossRefGoogle Scholar
  32. 32.
    De Roure, D., Goble, C., Stevens, R.: The design and realisation of the myexperiment virtual research environment for social sharing of workflows. Future Generation Computer Systems (2008) 2009 May, 25(5)Google Scholar
  33. 33.
    Goble, C., De Roure, D.: Curating scientific web services and workflows. Educause Review 43 (2008)Google Scholar
  34. 34.
    Missier, P., Belhajjame, K., Zhao, J., Goble, C.: Data lineage model for Taverna workflows with lightweight annotation requirements. IPAW’08, Salt Lake City, Utah (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Scott Marshall
    • 1
  • Marco Roos
    • 2
  • Edgar Meij
    • 2
  • Sophia Katrenko
    • 2
  • Willem Robert van Hage
    • 3
  • Pieter W. Adriaans
    • 2
  1. 1.Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Business Informatics, Faculty of SciencesVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations