Advertisement

Argumentation Theory and Decision Aiding

  • Wassila Ouerdane
  • Nicolas MaudetEmail author
  • Alexis Tsoukiàs
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 142)

Abstract

The purpose of this chapter is to examine the existent and potential contribution of argumentation theory to decision aiding, more specifically to multi-criteria decision aiding. On the one hand, decision aiding provides a general framework that can be adapted to different contexts of decision making and a formal theory about preferences. On the other hand, argumentation theory is a growing field of Artificial Intelligence, which is interested in non-monotonic logics. It is the process of collecting arguments in order to justify and explain conclusions. The chapter is decomposed into three successive frames, starting from general considerations regarding decision theory and Artificial Intelligence, moving on to the specific contribution of argumentation to decision-support systems, to finally focus on multi-criteria decision aiding.

Keyword

Argumentation theory Multiple criteria Decision analysis Decision-support systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Amgoud. Argumentation for decision making. In I. Rahwan and G.Simari, editors, Argumentation in Artificial Intelligence, pages 301–320. Springer Verlag, Berlin, 2009.Google Scholar
  2. 2.
    L. Amgoud, J.-F. Bonnefon, and H. Prade. An argumentation-based approach to multiple criteria decision. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’05), Barcelona, Spain, July 6–8, 2005, volume 3571 of Lecture Notes in Computer Science, pages 269–280. Springer Verlag, Berlin, 2005.Google Scholar
  3. 3.
    L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based argumentation frameworks. International Journal of Automated Reasoning, 29(2):125–169, 2002.CrossRefGoogle Scholar
  4. 4.
    L. Amgoud, C. Cayrol, and M.-C. Lagasquie Schiex. On the bipolarity in argumentation frameworks. In J.P. Delgrande and T. Schaub, editors, Proceedings of 10th International Workshop on Non-Monotonic Reasoning (NMR’04). Whistler, Canada, pages 1–9, 2004.Google Scholar
  5. 5.
    L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In E. Durfee, editor, Proceedings of the 4th International Conference on Multi-Agent Systems (ICMAS’00), pages 31–38, Boston, USA, 2000.Google Scholar
  6. 6.
    L. Amgoud, N. Maudet, and S. Parsons. An argumentation-based semantics for agent communication languages. In F. Van Harmelen, editor, Proceedings of the 15th European Conference on Artificial Intelligence (ECAI’02), pages 38–42, Lyon, France, 2002.Google Scholar
  7. 7.
    L. Amgoud and H. Prade. Using arguments for making decisions: A possibilistic logic approach. In Proccedings of the 20th Conference of Uncertainty in Artificial Intelligence (UAI’04). Banff, Canada, July 7–11, 2004, pages 10–17. AUAI Press, 2003.Google Scholar
  8. 8.
    L. Amgoud and H. Prade. Explaining qualitative decision under uncertainty by argumentation. In Y. Gil and R. Moo, editors, Proceedings of the 21st Conference on Artificial Intelligence (AAAI’06). Boston, USA, July 16–20, 2006. AAAI Press, 2006.Google Scholar
  9. 9.
    Aristotle. On Sophistical Refutations. Harvard University Press, Loeb Classical Library, Cambridge, Mass., 1928.Google Scholar
  10. 10.
    Aristotle. Topics. Harvard University Press, Loeb Classical Library, Cambridge, Mass., 1939.Google Scholar
  11. 11.
    K. Atkinson. What Should We Do? Computational Representation of Persuasive Argument in Practical Reasoning. PhD thesis, Department of Computer Science, University of Liverpool, 2005.Google Scholar
  12. 12.
    K. Atkinson. Value-based argumentation for democratic support. In P.E. Dunne and T.J.M. Bench-Capon, editors, Proceedings of the 1st International Conference on Computational Models of Natural Argument (COMMA’06). Liverpoool, UK, September 11–12, 2006, volume 144 of Frontiers in Artificial Intelligence and Applications, pages 47–58. IOS Press, Amsterdam, The Netherlands, 2006.Google Scholar
  13. 13.
    K. Atkinson, T.J.M. Bench-Capon, and P. McBurney. PARMENIDES: Facilitating democratic debate. In Proceedings of the 3rd International Conference on Electronic Grovernment. Zaragoza, Spain, August 30 – September 3, 2004, volume 3183 of Lecture Notes in Computer Science, pages 313–316. Springer Verlag, Berlin, 2004.Google Scholar
  14. 14.
    K. Atkinson, T.J.M. Bench-Capon, and S. Modgil. Argumentation for decision support. In S. Bressan, J. Küng, and R. Wagner, editors, Proceedings of the 17th International Conference on Database and Expert Systems Applications. Kraków, Poland, September 4–8, 2006, volume 4080 of Lecture Notes in Computer Science, pages 822–831. Springer Verlag, Berlin, 2006.CrossRefGoogle Scholar
  15. 15.
    C.A. Bana e Costa and J.C. Vansnick. Macbeth – an interactive path towards the construction of cardinal value fonctions. International Transactions in Operational Research, 1:489–500, 1994.Google Scholar
  16. 16.
    V. Belton and T. Stewart. Muliple Criteria Decision Analysis: An Integrated Approach. Kluwer Academic, 2002.Google Scholar
  17. 17.
    T.J.M. Bench-Capon. Value-based argumentation frameworks. In S. Benferhat and E. Giunchiglia, editors, Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR2002). Toulouse, France, April 19–21, 2002, pages 4436–454, 2002.Google Scholar
  18. 18.
    T.J.M. Bench-Capon and H. Prakken. Argumentation. In A.R. Lodder and A. Oskamp, editors, Information Technology & Lawyers : Advanced Technology in the Legal Domain from Challenges to Daily Routine, pages 61–80. Springer Verlag, Berlin, 2006.Google Scholar
  19. 19.
    T.J.M Bench-Capon and H. Prakken. Justifying actions by accruing arguments. In T.J.M. Bench-Capon and P.E. Dunne, editors, Proceedings of the 1st International Conference on Computational Models of Argument (COMMA’06). Liverpoool, UK, September 11–12, 2006, pages 247–258. IOS Press, Amsterdam, 2006.Google Scholar
  20. 20.
    S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and inconsistent knowledge base. In Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI93). Providence, USA, July 9–11, 1993, pages 411–419. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  21. 21.
    L. Birnbaum, M. Flowers, and R. McGuire. Towards an artificial intelligence model of argumentation. In R. Balzer, editor, Proceedings of the 1st Annual National Conference on Artificial Intelligence. Stanford University, August 18–21, 1980, pages 313–315. AAAI Press, 1980.Google Scholar
  22. 22.
    A. Blum, J. Jackson, T. Sandholm, and M. Zinkevich. Preference elicitation and query learning. Journal of Machine Learning Research, 5:649 – 667, 2004.Google Scholar
  23. 23.
    B. Bonet and H. Geffner. Arguing for decisions: A qualitative model of decision making. In E. Horvitz and F.V. Jensen, editors, Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI’96). Portland, USA, August 1–4, 1996, pages 98–105. Morgan Kaufmann, San Mateo, CA, 1996.Google Scholar
  24. 24.
    J.-F. Bonnefon and H. Fargier. Comparing sets of positive and negative arguments: Empirical assessment of seven qualitative rules. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, Proceedings of 17th European Conference on Artificial Intelligence(ECAI’06). Riva del Garda, Italy, August 29 – September 1, 2006, pages 16–20, 2006.Google Scholar
  25. 25.
    D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A. Tsoukiàs, and Ph. Vincke. Evaluation and Decision Models: A Critical Perspective. Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  26. 26.
    D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukiàs, and Ph. Vincke. Evaluation and Decision Models with Multiple Criteria: Stepping Stones for the Analyst. Springer Verlag, Berlin, 2006.Google Scholar
  27. 27.
    D. Bouyssou and Ph. Vincke. Ranking alternatives on the basis of preference relations: A progress report with special emphasis on outranking relations. Journal of Multiple Criteria Decision Analysis, 6:77–85, 1997.CrossRefGoogle Scholar
  28. 28.
    D.V. Carbogim, D. Robertson, and J. Lee. Argument-based applications to knowledge engineering. The Knowledge Engineering Review, 15(2):119–149, 2000.CrossRefGoogle Scholar
  29. 29.
    L. Carlson. Dialogue Games: An Approach to Discourse Analysis. Reidel, Dordrecht, 1983.Google Scholar
  30. 30.
    C. Cayrol and M.-C. Lagasquie Schiex. On the acceptability of arguments in bipolar argumentation frameworks. In Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’05), pages 378–389, 2005.Google Scholar
  31. 31.
    C.I. Chesñevar and A.G. Maguitman. ArgueNet: An argument-based recommender system for solving web search queries. In Proceedings of the 2nd international IEEE Conference on Intelligent Systems, pages 282–287, Varna, Bulgaria, 2004. IEEE Press.Google Scholar
  32. 32.
    C.I. Chesñevar, A.G. Maguitman, and R.P. Loui. Logical models of argument. ACM Computing Surveys, 32(4):337–383, 2000.CrossRefGoogle Scholar
  33. 33.
    C.I. Chesñevar, A.G. Maguitman, and M. Sabaté. An argument-based decision support system for assessing natural language usage on the basis of the web corpus. International Journal of Intelligent Systems, 2006.Google Scholar
  34. 34.
    C.I. Chesñevar, A.G. Maguitman, and G.R. Simari. A first approach to argument-based recommender systems based on defeasible logic programing. In J.P. Delgrande and T. Schaub, editors, Proceedings of the 10th International Workshop on Non Monotonic Reasoning (NMR’04). Whistler, Canada, June 6–8, 2004, pages 109–117, June 2004.Google Scholar
  35. 35.
    C.I. Chesñevar, A.G. Maguitman, and G.R. Simari. Argument-based critics and recommenders: a qualitative perspective on user support systems. Journal of Data and Knowledge Engineering, 59(2):293–319, 2006.CrossRefGoogle Scholar
  36. 36.
    M. Dastani, J. Hulstijn, and L.W.N. van der Torre. How to decide what to do? European Journal of Operational Research, 160(3):762–784, 2005.CrossRefGoogle Scholar
  37. 37.
    L.C. Dias and V. Mousseau. Inferring Electre’s veto-related parameters from outranking examples. European Journal of Operational Research, 170:172–191, 2006.CrossRefGoogle Scholar
  38. 38.
    Y. Dimopoulos, P. Morasitis, and A. Tsoukiàs. Argumentation based modeling of decision aiding for autonomous agents. In Proceedings of the Intelligent Agent Technology IEEE/WIC/ACM International Conference (IAT 2004), pages 99–105. IEEE Computer Society, Washington DC, 2004.Google Scholar
  39. 39.
    J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.CrossRefGoogle Scholar
  40. 40.
    J. Doyle and R.H. Thomason. Background to qualitative decision theory. AI Magazine, 20:55–68, 1999.Google Scholar
  41. 41.
    P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.CrossRefGoogle Scholar
  42. 42.
    G. Ferguson, J. Allen, and B. Miller. Trains-95 : Towards a mixed-initiative planning assistant. In B. Drabble, editor, Proceedings of the 3rd International Conference on AI Planning Systems. Edinburgh, Scotalnd, May 29–31, 1996, pages 70–77. AAAI Press, 1996.Google Scholar
  43. 43.
    J. Figueira, S. Greco, and M. Ehrgott, editors. Multiple Criteria Decision Analysis: State of the Art Surveys. Springer Verlag, Boston, 2005.Google Scholar
  44. 44.
    J. Fox, D. Barber, and K.D. Bardhan. Alternatives to Bayes? A quantitative comparison with rule-based diagnostic inference. Methods of Information in Medicine, 19(4):210–215, 1980.Google Scholar
  45. 45.
    J. Fox, P. Krause, and M. Elvang-Gøransson. Argumentation as a general framework for uncertain reasoning. In D. Heckerman and A. Mamdani, editors, Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI’93). Providence, USA, July 9–11, 1993, pages 428–434. Morgan Kaufmann, San Mateo CA, 1993.Google Scholar
  46. 46.
    J. Fox and S. Parsons. On using arguments for reasoning about actions and values. In Proceedings of the AAAI Spring Symposium on Qualitative Preferences in Deliberation and Practical Reasoning. Stanford, USA, 1997, pages 55–63. AAAI Press, 1997.Google Scholar
  47. 47.
    J. Fox and S. Parsons. Arguing about beliefs and actions. In Applications of Uncertainty Formalisms, volume 1455 of Lecture Notes in Computer Science, pages 266–302, 1998.Google Scholar
  48. 48.
    L.A. Franco, D. Shaw, and M. Westcombe. Special issue: Problem structuring methods. Journal of the Operational Research Society, 57:757 – 883, 2006.CrossRefGoogle Scholar
  49. 49.
    A.J. García and G.R. Simari. Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming, 4(2):95–138, 2004.CrossRefGoogle Scholar
  50. 50.
    D. Glasspool, J. Fox, A. Oettinger, and J. Smith-Spark. Argumentation in decision support for medical care planning for patients and clinicians. In T. Bickmore and N. Green, editors, Proceedings of AAAI Spring Symposium Series 2006. AAAI Press, New York, 2006.Google Scholar
  51. 51.
    D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61–70, 1992.CrossRefGoogle Scholar
  52. 52.
    M.K. Goldstein, B.B. Hoffman, R.W. Coleman, M.A. Musen, S.W. Tu, A. Advani, R. Shankar, and M. O’Connor. Implementing clinical practice guidelines while taking account of changing evidence: ATHENA DSS, an easily modifiable decision-support system for managingan hypertension in primary care. Proceedings of the American Medical Informatics Association Symposium, 20:300–304, 2000.Google Scholar
  53. 53.
    S.A. Gómez and C.I. Chesñevar. A hybrid approach to pattern classification using neural networks and defeasible argumentation. In Proceedings of the 17th International FLAIRS Conference. Florida, USA, 2004, pages 393–398. AAAI Press, Stanford CA, 2004.Google Scholar
  54. 54.
    T. Gordon, N.I. Karacapilidis, H. Voss, and A. Zauke. Computer-mediated cooperative spatial planning. In H. Timmermans, editor, Decision Support Systems in Urban Planning, pages 299–309. E & FN Spon, London, 1997.Google Scholar
  55. 55.
    T.F. Gordon and N.I. Karacapilidis. The zeno argumentation framework. In Proceedings of the 6th International Conference on Artificial Intelligence and Law (ICAIL’97). Melbourne, Australia, June 30–July 3, 1997, pages 10–18. ACM Press, 1997.Google Scholar
  56. 56.
    T.F. Gordon and D. Walton. Proof burdens and standards. In I. Rahwan and G. Simari, editors, Argumentation in Artificial Intelligence, pages 239–260. Springer Verlag, Berlin, 2009.CrossRefGoogle Scholar
  57. 57.
    S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129:1–47, 2001.CrossRefGoogle Scholar
  58. 58.
    S. Greco, B. Matarazzo, and R. Slowinski. Chapter 13: Decision rule approach. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 507–562. Springer Verlag, Boston, 2005.Google Scholar
  59. 59.
    S. Greco, V. Mousseau, and R. Slowinski. Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191:415–435, 2008.CrossRefGoogle Scholar
  60. 60.
    F. Guinchiglia. Contextual reasoning. Epistemoligia, 16:345–364, 1993.Google Scholar
  61. 61.
    V. Ha and P. Haddawy. Similarity of personal preferences: Theoretical foundations and empirical analysis. Artificial Intelligence, 146:149 – 173, 2003.CrossRefGoogle Scholar
  62. 62.
    P. Haddaway, V. Ha, A. Restificar, B. Geisler, and J. Miyamoto. Preference elicitation via theory refinement. Journal of Machine Learning Research, 4:317 – 337, 2003.CrossRefGoogle Scholar
  63. 63.
    A.C. Hastings. A Reformulation of the Modes of Reasoning in Argumentation. PhD thesis, Northwestern University, Evanston, Illinois, 1963.Google Scholar
  64. 64.
    E. Jacquet-Lagrèze and Y. Siskos. Preference disaggregation: 20 years of MCDA experience. European Journal of Operational Research, 130:233–245, 2001.CrossRefGoogle Scholar
  65. 65.
    S. Kaci and L. Van der Torre. Preference-based argumentation: Arguments supporting multiple values. International Journal of Approximate Reasoning, pages 730–751, 2008.Google Scholar
  66. 66.
    A.C. Kakas and P. Moraitis. Argumentative agent deliberation, roles and context. In Proceedings of CLIMA’2002 Computational Logic in Multi-Agent Systems. Copenhagen, Denmark, August 1, 2002, pages 35–48, 2002. Electronic Notes in Theoretical Computer Science 70(5).Google Scholar
  67. 67.
    A.C. Kakas and P. Moraitis. Argumentation based decision making for autonomous agents. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems. Melbourne, Australia, pages 883–890. ACM Press, New York, NY, 2003.Google Scholar
  68. 68.
    N.I. Karacapilidis and D. Papadias. A group decision and negotiation support system for argumentation based reasoning. In Selected Papers from the Workshop on Reasoning with Incomplete and Changing Information and on Inducing Complex Representations (PRICAI ’96), volume 1359 of Lecture Notes in Computer Science, pages 188–205. Springer Verlag, Berlin, 1998.Google Scholar
  69. 69.
    N.I. Karacapilidis and D. Papadias. Hermes: Supporting argumentative discourse in multi-agent decision making. In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison, WI, pages 827–832. American Association for Artificial Intelligence, Menlo Park, CA, 1998.Google Scholar
  70. 70.
    N.I. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative decision making: The HERMES system. Information System, 26:259–277, 2001.CrossRefGoogle Scholar
  71. 71.
    N.I. Karacapilidis, D. Papadias, T.F. Gordon, and H. Voss. Collaborative environmental planning with GeoMed. European Journal of Operational Research, 102(2):335–346, 1997.CrossRefGoogle Scholar
  72. 72.
    R.L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. J. Wiley, New York, 1976.Google Scholar
  73. 73.
    A. Kilgarriff and G. Grefenstette. Web as corpus. Introduction to the special issue on the Web as corpus. Computational Linguistics, 29(3):333–347, 2003.Google Scholar
  74. 74.
    J.A. Konstan. Introduction to recommender systems: Algorithms and evaluation. ACM Transactions on Information Systems, 22(1):1–4, 2004.CrossRefGoogle Scholar
  75. 75.
    K.L. Kraemer and J.L. King. Computer-based systems for cooperative work and group decision making. ACM Computing Surveys, 20(2):115–146, 1988.CrossRefGoogle Scholar
  76. 76.
    W. Kunz and H.W. Rittel. Issues as elements of informations systems. Technical Report 131, Institut für Grundlagen der Planung, Universität Stuttgart, 1970.Google Scholar
  77. 77.
    P. Maes. Agents that reduce work and information overload. Communications of the ACM, 37(7):30–40, 1994.CrossRefGoogle Scholar
  78. 78.
    P. McBurney and S. Parsons. Risk agoras: Dialectical argumentation for scientific reasoning. In C. Boutilier and M. Goldszmidt, editors, Proceedings of 16th Conference on Uncertainty in Artificial Intelligence (UAI’00). Stanford, USA, June 30–July 3, 2000, pages 371–379. Morgan Kaufmann, San Francisco CA, 2000.Google Scholar
  79. 79.
    P. McBurney and S. Parsons. Representing epistemic uncertainty by means of dialectical argumentation. Annals of Mathematics and Artificial Intelligence, 32(1–4):125–169, 2001.CrossRefGoogle Scholar
  80. 80.
    P. McBurney and S. Parsons. Dialogue game protocols. In Communication in Multiagent Systems. Agent Communication Languages and Conversation Policies, volume 2650 of Lecture Notes in Computer Science, pages 269–283. Springer Verlag, Berlin, 2003.Google Scholar
  81. 81.
    J.L. McCarthy. Epistemological problems of artificial intelligence. In Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI’77). Cambridge MA, USA, August 22–25, 1977, pages 1038–1044, 1977.Google Scholar
  82. 82.
    D. McDermott and J. Doyle. Nonmonotonic logic 1. Artificial Intelligence, 13:41–72, 1980.CrossRefGoogle Scholar
  83. 83.
    R.C. Moore. Semantical consideration on nonmonotonic logic. Artificial Intelligence, 25: 75–94, 1985.CrossRefGoogle Scholar
  84. 84.
    M. Morge. Computer supported collaborative argumentation. In F. Grasso, C. Reed, and G. Caremini, editors, Proceedings of 4th workshop on Computational Models of Natural Argument (CNMA04), pages 1–4, 2004.Google Scholar
  85. 85.
    M. Morge. The hedgehog and the fox. an argumentation-based decision support system. In Proceedings of the 4th International Workshop on Argumentation in Multi-Agent Systems (ArgMas’07), pages 55–68, USA, 2007. Springer Verlag.Google Scholar
  86. 86.
    M. Musen, S. Tu, K. Das, and Y. Shahar. EON: A component-based approach to automation of protocol-directed therapy. Journal of the American Medical Informatics Association, 3(6):367–388, 1996.Google Scholar
  87. 87.
    T.J. Norman, D.V. Carbogim, E.C. Krabb, and D. Walton. Argument and multi-agent systems. In C. Reed and T.J. Norman, editors, Argumentation Machines: New Frontiers in Argument and Computation, chapter 2, pages 15–54. Kluwer Academic Publishers, 2003.Google Scholar
  88. 88.
    W. Ouerdane, N. Maudet, and A. Tsoukiàs. Argument schemes and critical questions for decision aiding process. In Ph. Besnard, S. Doutre, and A. Hunter, editors, Proceedings of the 2nd International Conference on Computational Models of Argument (COMMA’08), pages 285–296. IOS Press, Amsterdam, 2008.Google Scholar
  89. 89.
    M. Oztürk, A. Tsoukiàs, and Ph. Vincke. Preference modelling. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 27–72. Springer Verlag, Boston, 2005.Google Scholar
  90. 90.
    S. Parons and P. McBurney. Argumentation-based dialogue for argent coordination. Group Decision and Negiciation, 12:415–439, 2003.CrossRefGoogle Scholar
  91. 91.
    S. Parsons and S. Greene. Argumentation and qualitative decision making. In Proceedings of the 3rd European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’99), London, United Kingdom, July 5–9, 1999, volume 1638 of Lecture Notes in Computer Science, pages 328–340. Springer Verlag, Berlin, 1999.Google Scholar
  92. 92.
    S. Parsons and N. Jennings. Argumentation and multi-agent decision making. In Proceedings of the AAAI Spring Symposium on Interactive and Mixed-Initiative Decision Making, Stanford, USA, pages 89–91. AAAI Press, 1998.Google Scholar
  93. 93.
    S. Parsons, C. Sierra, and N. Jennings. Agents that reason and negotiate by arguing. Journal of Logic and Computation, 8(3):261–292, 1998.CrossRefGoogle Scholar
  94. 94.
    C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argumentation. University of Notre Dame Press, Notre Dame, London, 1969.Google Scholar
  95. 95.
    J.L. Pollock. Defeasible reasoning. Cognitive Science, 11:481–518, 1987.CrossRefGoogle Scholar
  96. 96.
    J.L. Pollock. Cognitive Carpentry : A Blueprint for How to Build a Person. The MIT Press, Cambridge MA, 1995.Google Scholar
  97. 97.
    H. Prakken. A logical framework for modeling legal argument. In G. Carenini, F. Grasso, and C. Reed, editors, Proceeding of the Fourth International Conference on Artificial Intelligence and Law, pages 1–9. ACM, New York, 1993.CrossRefGoogle Scholar
  98. 98.
    H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation, 15(6):1009–1040, 2005.CrossRefGoogle Scholar
  99. 99.
    H. Prakken and G. Sartor. Argument-based logic programming with defeasible priorities. Journal of Applied Non-classical Logics, 7:25–75, 1997.Google Scholar
  100. 100.
    H. Prakken and G. Sartor. The role of logic in computational models of legal argument: A critical survey. In A.C. Kaks and F. Sadri, editors, Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, volume 2408 of Lecture Notes in Computer Science, pages 342–381. Springer Verlag, Berlin, 2002.Google Scholar
  101. 101.
    H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 4, pages 219–318. Kluwer Academic Publsihers, Dordrecht, 2001, 2002.Google Scholar
  102. 102.
    C. Reed and T.J. Norman. Argumentation Machines : New Frontiers in Argument and Computation. Kluwer Academic Publishers, 2003.Google Scholar
  103. 103.
    C. Reed and D. Walton. Application of argumentation schemes. In H.V. Hansen, C.W. Tindale, J.A. Blair, R.H. Johnson, and R.C. Pinto, editors, Conference of the Ontario Society for the Study of Argument (OSSA2001), Windsor, Canada, pages 1–8, 2001.Google Scholar
  104. 104.
    W. Rehg, P. McBurney, and S. Parsons. Computer decision-support systems for public argumentation: assessing deliberative legitimacy. Artificial Intelligence & Society, 19(3):203–228, 2005.Google Scholar
  105. 105.
    R. Reiter. A logic for default reasoning. Artificial Intelligence, 67(1,2):81–132, 1980.Google Scholar
  106. 106.
    R. Reiter. Nonmonotonic reasoning. Annual Review of Computer Science, 2:147–186, 1987.CrossRefGoogle Scholar
  107. 107.
    N. Rescher. Introduction to Value Theory. Prentice Hall, Engleweeod Cliffs, 1969.Google Scholar
  108. 108.
    P. Resnick and H.R. Varian. Recommender systems. Communications of the ACM, 40(3): 56–58, 1997.CrossRefGoogle Scholar
  109. 109.
    H.W.J. Rittel and M.M. Webber. Dilemmas in a general theory of planning. Policy Sciences, 4(2):155–169, 1973.CrossRefGoogle Scholar
  110. 110.
    F.S. Roberts. Measurement Theory, with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston, 1979.Google Scholar
  111. 111.
    J. Rosenhead. Rational Analysis of a Problematic World. J. Wiley, New York NY, 1989. 2nd revised edition in 2001.Google Scholar
  112. 112.
    M. Roubens and Ph. Vincke. Preference Modeling. Springer Verlag, Berlin, 1985.Google Scholar
  113. 113.
    B. Roy. Decision-aid and decision-making. European Journal of Operational Research, 45:324–331, 1990.CrossRefGoogle Scholar
  114. 114.
    B. Roy. The outranking approach and the foundation of ELECTRE methods. Theory and Decision, 31:49–73, 1991.CrossRefGoogle Scholar
  115. 115.
    B. Roy. Decision science or decision-aid science? European Journal of Operational Research, 66:184–203, 1993.CrossRefGoogle Scholar
  116. 116.
    B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht, 1996.Google Scholar
  117. 117.
    B. Roy and D. Bouyssou. Aide Multicritèr à la Décision : Méthode et Cas. Economica, Paris, 1993.Google Scholar
  118. 118.
    T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, New York, 1980.Google Scholar
  119. 119.
    A.A. Salo and R.P. Hamalainen. Preference ratio in multiattribute evaluation (PRIME) - elicitation and decision procedures under incomplete information. IEEE Transactions on Systems, Man and Cybertnetics: Part A, 31:533–545, 2001.Google Scholar
  120. 120.
    T. Sandholm and C. Boutilier. Preference elicitation in combinatorial auctions. In P.Cramton, Y. Shoham, and R. Steinberg, editors, Combinatorial Auctions, pages 233 – 264. MIT Press, Boston, 2006.Google Scholar
  121. 121.
    R.D. Shankar, S.W. Tu, and M.A. Musen. Medical arguments in an automated health care system. In Proceedings of the AAAI Spring Symposium, Stanford University, USA, March 27–29, 2006, pages 55–63. AAAI Press, 2006.Google Scholar
  122. 122.
    D. Shaw, L.A. Franco, and M. Westcombe. Special issue: Problem structuring methods ii. Journal of the Operational Research Society, 58:545–700, 2007.CrossRefGoogle Scholar
  123. 123.
    C. Sierra, N.R. Jennings, P. Noriega, and S. Parsons. A framework for argumentation-based negotiation. In M.P. Singh, A.S. Rao, and M. Wooldridge, editors, Proceedings of the 4th International Workshop on Intelligent Agents IV, Agent Theories, Architectures, and Languages (ATAL’97), Providence, USA, July 24–26, 1997, volume 1365 of Lecture Notes in Computer Science, pages 177–192. Springer Verlag, Berlin, 1998.Google Scholar
  124. 124.
    C. Sillince. Multi-agent conflict resolution: a computational framework for an intelligent argumentation program. Knowledge-Based Systems, 7:75–90, 1994.CrossRefGoogle Scholar
  125. 125.
    G.R. Simari and R.P. Loui. A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 53:125–157, 1992.CrossRefGoogle Scholar
  126. 126.
    H.A. Simon. Rational decision making in business organisations. American Economic Review, 69:493–513, 1979.Google Scholar
  127. 127.
    K. Sycara. Argumentation: Planning other agent’s plans. In Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, USA, August 20–25, 1989, pages 517–523. Morgan Kaufmann, San Francisco CA, 1989.Google Scholar
  128. 128.
    K. Sycara. Persuassive argumentation in negotiation. Theory and Decision, 28(3):203–242, 1990.CrossRefGoogle Scholar
  129. 129.
    S. Toulmin. The Uses of Arguments. Cambridge University Press, Cambridge, UK, 1958.Google Scholar
  130. 130.
    A. Tsoukiàs. Preference modelling as a reasoning process: a new way to face uncertainty in multiple criteria decision support systems. European Journal of Operational Research, 55:309–318, 1991.CrossRefGoogle Scholar
  131. 131.
    A. Tsoukiàs. On the concept of decision aiding process. Annals of Operations Research, 154(1):3–27, 2007.CrossRefGoogle Scholar
  132. 132.
    A. Tsoukiàs. From decision theory to decision aiding methodology. European Journal of Operational Research, 187:138 –161, 2008.CrossRefGoogle Scholar
  133. 133.
    A. Tsoukiàs and Ph. Vincke. Extended preference structures in MCDA. In J. Climaco, editor, Multi-criteria Analysis, pages 37–50. Springer Verlag, Berlin, 1997.Google Scholar
  134. 134.
    B. Verheij. Rules, Reasons, Arguments: Formal Studies of Argumentation and Defeat. PhD thesis, Maastricht University, Holland, 1996.Google Scholar
  135. 135.
    B. Verheij. On the existence and multiplicity of extensions in dialectical argumentation. In S. Benferhat and E. Giunchiglia, editors, Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR’02), Toulouse, France, April 19–21, 2002, pages 416–425, 2002.Google Scholar
  136. 136.
    B. Verheij. Artificial argument assistants for defeasible argumentation. Artificial Intelligence, 150(1-2):291–324, 2003.CrossRefGoogle Scholar
  137. 137.
    Ph. Vincke. Exploitation of a crisp relation in a ranking problem. Theory and Decision, 32(3):221–240, 1992.CrossRefGoogle Scholar
  138. 138.
    Ph. Vincke. Multicriteria Decision-Aid. J. Wiley, New York, 1992.Google Scholar
  139. 139.
    G. Vreeswijk. Studies in Defeasible Argumentation. PhD thesis, Vrije Universiteit Amsterdam, 1993.Google Scholar
  140. 140.
    G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279, 1997.CrossRefGoogle Scholar
  141. 141.
    D. Walton. What is reasoning? What is an argument? Journal of Philosophy, 87:399–419, 1990.CrossRefGoogle Scholar
  142. 142.
    D. Walton. Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum, Mahwah, NJ, 1996.Google Scholar
  143. 143.
    D.N. Walton. Justification of argument schemes. Australasian Journal of Logic, 3:1–13, 2005.Google Scholar
  144. 144.
    D.N. Walton. Visualization tools, argumentation schemes and expert opinion evidence in law. Law, Probability and Risk Advance Access, pages 1–22, 2007.Google Scholar
  145. 145.
    D.N. Walton and T.F. Gordon. Critical questions in computational models of legal argument. In P.E. Dunne and T. Bench-Capon, editors, International Workshop on Argumentaiton in Artificial Intelligence and Law, pages 103–111. Wolf Legal publishers, 2005.Google Scholar
  146. 146.
    D.N. Walton and E.C.W. Krabbe. Commitment in Dialogue: Basic Conceptions of Interpersonal Reasoning. SUNY Press, Albany, NY, 1995.Google Scholar
  147. 147.
    J. Wang. Artificial neural networks versus natural neural networks: a connectionist paradigm for preference assessment. Decision Support Systems, 11:415–429, 1994.CrossRefGoogle Scholar
  148. 148.
    A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, Cambridge, 1910.Google Scholar
  149. 149.
    M.J. Wooldrdige. Reasoning About Rational Agents. MIT Press, Cambridge MA, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wassila Ouerdane
    • 1
  • Nicolas Maudet
    • 1
    Email author
  • Alexis Tsoukiàs
    • 1
  1. 1.CNRS – LAMSADEUniversité Paris-DauphinePARIS Cedex 16France

Personalised recommendations