Advertisement

Robustness in Multi-criteria Decision Aiding

  • Hassene AissiEmail author
  • Bernard Roy
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 142)

Abstract

After bringing precisions to the meaning we give to several of the terms used in this chapter (e.g., robustness, result, procedure, method, etc.), we highlight the principal characteristics of most of the publications about robustness. Subsequently, we present several partial responses to the question, “Why is robustness a matter of interest in Multi-Criteria Decision Aiding (MCDA)?” (see Section 4.2). Only then do we provide an outline for this chapter. At this point, we introduce the concept of variable setting, which serves to connect what we define as the formal representation of the decision-aiding problem and the real-life decisional context. We then introduce five typical problems that will serve as reference problems in the rest of the chapter. Section 4.3 deals with recent approaches that involve a single robustness criterion completing (but not replacing) a preference system that has been defined previously, independently of the robustness concern. The following section deals with approaches in which the robustness concern is modelled using several criteria. Section 4.5 deals with the approaches in which robustness is considered other than by using one or several criteria to compare the solutions. These approaches generally involve using one or several properties destined to characterize the robust solution or to draw robust conclusions. In the last three sections, in addition to describing the appropriate literature, we suggest some avenues for new development and in some cases, we present some new approaches.

Keyword

Robustness Multi-criteria methods Decision aiding MAUT ELECTRE methods Mathematical programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research, 197 (2):427–438, 2009.CrossRefGoogle Scholar
  2. 2.
    K. Arrow and H. Raynaud. Social Choice and Multicriteria Decision-Making. MIT Press, 1986.Google Scholar
  3. 3.
    A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research, 23:769–805, 1998.CrossRefGoogle Scholar
  4. 4.
    A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations Research Letters, 25:1–13, 1999.CrossRefGoogle Scholar
  5. 5.
    D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical Programming Series B, 98:49–71, 2003.CrossRefGoogle Scholar
  6. 6.
    D. Bertsimas, D. Pachamanova, and M. Sim. Robust linear optimization under general norms. Operations Research Letters, 32:510–516, 2004.CrossRefGoogle Scholar
  7. 7.
    B. Besharati and S. Azarm. Worst case deterministic feasibility and multiobjective robustness measures for engineering design optimisation. International Journal of Reliability and Safety, 1:40–58, 2006.CrossRefGoogle Scholar
  8. 8.
    J.C. Billaut, A. Moukrim, and E. Sanlaville, editors. Flexibilité et Robustesse en Ordonnancement. Paris, Lavoisier, 2005.Google Scholar
  9. 9.
    W. Chen, J. Allen, K.L. Tsui, and F. Mistree. A procedure for robust design: Minimizing variations caused by noise factors and control factors. Journal of Mechanical Design, 118:478–493, 1996.CrossRefGoogle Scholar
  10. 10.
    M. Ehrgott and D.M. Ryan. Constructing robust crew schedules with bicriteria optimization. Journal of Multi-Criteria Decision Analysis, 11:139–150, 2002.CrossRefGoogle Scholar
  11. 11.
    L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertainty data. SIAM Journal on Matrix Analysis and Applications, 18:1035–1064, 1997.CrossRefGoogle Scholar
  12. 12.
    L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite programs. SIAM Journal of Optimization, 9:33–52, 1998.CrossRefGoogle Scholar
  13. 13.
    F.R. Fernández, S. Nickel, J. Puerto, and A.M. Rodríguez-Chía. Robustness in the Pareto-solutions for the multicriteria Weber location problem. Journal of Multi-Criteria Decision Analysis, 10:191–203, 2001.CrossRefGoogle Scholar
  14. 14.
    J. Figueira, S. Greco, V. Mousseau, and R. Slowinski. Interactive multiobjective optimization using a set of additive value functions. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, Multiobjective Optimization: Interactive and Evolutionary Approaches, volume 5252 of Lecture Notes in Computer Science, pages 97–120. Springer-Verlag, Berlin, 2008.Google Scholar
  15. 15.
    J. Figueira, S. Greco, and R. Slowinski. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research, 195(2):460–486, 2009.CrossRefGoogle Scholar
  16. 16.
    M. Grabisch. The application of a fuzzy integral in multicriteria decision making. European Journal of Operational Research, 89:445–457, 1996.CrossRefGoogle Scholar
  17. 17.
    S. Greco, V. Mousseau, and R. Slowinski. The necessary and the possible in a perspective of robust decision aiding. In 66th Meeting of the EURO Working Group “Multiple Criteria Decision Aiding”, Marrakech, Morroco, October 18–20, 2007.Google Scholar
  18. 18.
    S. Greco, V. Mousseau, and R. Slowinski. Multicriteria sorting with a set of value functions. In Joint Conference FRANCORO V / ROADEF 2007, Grenoble, France, February 20-23, 2007, 2007.Google Scholar
  19. 19.
    S. Greco, V. Mousseau, and R. Slowinski. Ordinal regression revisited: Multiple criteria ranking with a set of additive value functions. European Journal of Operational Research, 191:416–435, 2008.CrossRefGoogle Scholar
  20. 20.
    R. Hites, Y. De Smet, N. Risse, M. Salazar-Neumann, and P. Vincke. About the applicability of MCDA to some robustness problems. European Journal of Operational Research, 74:322–332, 2006.CrossRefGoogle Scholar
  21. 21.
    Z. Jia and M.G. Ierapetritou. Generate pareto optimal solutions of scheduling problems using normal boundary intersection technique. Computers & Chemical Engineering, 31:268–280, 2007.CrossRefGoogle Scholar
  22. 22.
    J. Kennington, K. Lewis, E. Olinick, A. Ortynski, and G. Spiride. Robust solutions for the WDM routing and provisioning problem with uncertain demands and single link failure protection. Technical Report 01-EMIS-07, EMIS Departement, SMU, Dallas, 2001.Google Scholar
  23. 23.
    P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, Boston, 1997.Google Scholar
  24. 24.
    C. Lamboray. Supporting the search for a group ranking with robust conclusions on prudent orders. In B. Roy, M.A. Aloulou, and R. Kalaï, editors, Robustness in OR-DA, pages 145–172. Université Paris-Dauphine, Annales du LAMSADE n 7, 2007.Google Scholar
  25. 25.
    Newsletter of the European Working Group “Multiple Criteria Decision Aiding”. Newletter of the European Working Group “Multiple Criteria Decision Aiding”. Available online at http://www.inescc.pt/~ewgmcda/Articles.html, 2002-2007.
  26. 26.
    J.C. Pomerol, B. Roy, C. Rosenthal-Sabroux, and A. Saad. An “intelligent” DSS for the multicriteria evaluation of railway timetables. Foundations of Computing and Decision Sciences, 20:219–238, 1995.Google Scholar
  27. 27.
    B. Roy. Multicriteria Methodology for Decision Analysis. Kluwer Academic Publishers, 1996.Google Scholar
  28. 28.
    B. Roy. Robustesse de quoi et vis-à-vis de quoi mais aussi robustesse pourquoi en aide à la décision ? In C. Henggeler Antunes, J. Figueira, and J. Clímaco, editors, Aide Multicritère á la Décision- Multiple Criteria Decision Aiding, 56 e Journées du Groupe de Travail Européen “Aide Multicritère à la Décision” – 56th Meeting of the European Working Group “Multiple Criteria Decison Aiding”, Coimbra, Portugal, October 3–5, 2002, Comissão de Coordenação e Desenvolvimento Regional do Centro, INESC Coimbra, Faculdade de Economia da Universidade de Coimbra, pages 29–39, 2004.Google Scholar
  29. 29.
    B. Roy. A propos de robustesse en recherche opérationnelle et aide à la décision. In J.C. Billaut, A. Moukrim, and E. Sanlaville, editors, Flexibilité et robustesse en ordonnancement, pages 35–50. Paris, Lavoisier, 2005.Google Scholar
  30. 30.
    B. Roy. Robustness in operational research and decision aiding: A multi-faceted issue. European Journal of Operational Research, 200:629–638, 2010. Also in French: La robustesse en recherche opérationnelle et aide à la décision: une préoccupation multi-facettes. In Robustness in OR-DA, Roy, B. and Aloulou, M.A. and Kalaï, R., editors, pages 209–236, Université Paris-Dauphine, Annales du LAMSADE n 7, 2007.Google Scholar
  31. 31.
    B. Roy. Une lacune en RO-AD: les conclusions robustes. Cahier du LAMSADE 144, Université Paris-Dauphine, 1997.Google Scholar
  32. 32.
    B. Roy. A missing link in OR-DA, robustness analysis. Foundations of Computing and Decision Sciences, 23:141–160, 1998.Google Scholar
  33. 33.
    B. Roy and D. Bouyssou. Aide Multicritère à la Décision : Méthodes et Cas. Paris, Economica, 1993.Google Scholar
  34. 34.
    B. Roy and J.C. Hugonnard. Ranking of suburban line extension projects on the Paris metro system by a multicriteria method. Transportation Research, 16A:301–312, 1982.Google Scholar
  35. 35.
    B. Roy, M. Présent, and D. Silhol. Programmation de la rénovation des stations du métro parisien : Un cas d’application de la méthode ELECTRE III. Document du LAMSADE 24, Université Paris-Dauphine, 1983.Google Scholar
  36. 36.
    B. Roy, M. Présent, and D. Silhol. A programming method for determining which paris metro stations should be renovated. European Journal of Operational Research, 24:318–334, 1986.CrossRefGoogle Scholar
  37. 37.
    D.E. Salazar and C.M.S. Rocco. Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application. Reliability Engineering & System Safety, 92:697–706, 2007.CrossRefGoogle Scholar
  38. 38.
    Y. Siskos, E. Grigoroudis, and N.F. Matsatsinis. UTA methods. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis – State of the Art Surveys, pages 297–343. Springer, Berlin, 2005.Google Scholar
  39. 39.
    L.A. Soyster. Convex programming with set-inclusive constraints and application to inexact linear programming. Operations Research, 2:1154–1157, 1973.CrossRefGoogle Scholar
  40. 40.
    L.A. Soyster. A duality theory for convex programming with set-inclusive constraints. Operations Research, 22:892–898, 1974.CrossRefGoogle Scholar
  41. 41.
    R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, New York, 1986.Google Scholar
  42. 42.
    P. Vincke. Robust and neutral methods for aggregating preferences into an outranking relation. European Journal of Operational Research, 112:405–412, 1999.CrossRefGoogle Scholar
  43. 43.
    P. Vincke. Robust solutions and methods in decision-aid. Journal of Multi-Criteria Decision Analysis, 8:181–187, 1999.CrossRefGoogle Scholar
  44. 44.
    R.R. Yager. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18:183–190, 1988.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.LAMSADEUniversité Paris-DauphineParisFrance

Personalised recommendations