Advertisement

Subject-Specific Ligament Models: Toward Real-Time Simulation of the Knee Joint

  • Tobias HeimannEmail author
  • François Chung
  • Hans Lamecker
  • Hervé Delingette
Conference paper

Abstract

We present an efficient finite element method to simulate a transversely isotropic nonlinear material for ligaments. The approach relies on tetrahedral elements and exploits the geometry to optimize computation of the derivatives of the strain energy. To better support incompressibility, deviatoric and dilational responses are uncoupled and a penalty term controls volume preservation. We derive stress and elasticity tensors required for implicit solvers and verify our model against the FEBio software using a variety of load scenarios with synthetic shapes. The maximum node positioning error for ligament materials is <5% for strains under physiological conditions.

To generate subject-specific ligament models, we propose a novel technique to estimate fiber orientation from segmented ligament geometry. The approach is based on an automatic centerline extraction and generation of the corresponding diffusion field. We present results for a medial collateral ligament segmented from standard MRI data. Results show the general viability of the method, but also the limitations of current MRI acquisitions. In the future, we hope to employ the presented techniques for real-time simulation of knee surgery.

Keywords

Simulation Knee Ligament Real-Time 

Notes

Acknowledgment

This work is supported by the EU Marie Curie project 3D Anatomical Human (MRTN-CT-2006-035763).

References

  1. 1.
    Woo, S.L.Y., Debski, R.E., Withrow, J.D., Janaushek, M.A.: Biomechanics of knee ligaments. The American Journal of Sports Medicine, 27(4), 533–543 (1999)Google Scholar
  2. 2.
    Chen, J.X., Wechsler, H., Pullen, J.M., Zhu, Y., MacMahon, E.B.: Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization. IEEE Transactions on Biomedical Engineering, 48(9), 1042–1052 (2001)CrossRefGoogle Scholar
  3. 3.
    Ramaniraka, N.A., Saunier, P., Siegrist, O., Pioletti, D.P.: Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clinical Biomechanics, 22, 336–343 (2007)CrossRefGoogle Scholar
  4. 4.
    Ellis, B.J., Lujan, T.J., Dalton, M.S., Weiss, J.A.: Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Journal of Orthopaedic Research, 24(4) 800–810 (2006)CrossRefGoogle Scholar
  5. 5.
    Fernandez, J.W., Hunter, P.J.: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomechanics and Modeling in Mechanobiology, 4, 20–38 (2005)CrossRefGoogle Scholar
  6. 6.
    Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135, 107–128 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F., Leyvraz, P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. Journal of Biomechanics, 31, 753–757 (1998)CrossRefGoogle Scholar
  8. 8.
    Wu, W., Heng, P.A.: An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. The Visual Computer, 21, 707–716 (2005)CrossRefGoogle Scholar
  9. 9.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models, 65, 305–321 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Teran, J., Sifakis, E., Blemker, S.S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics, 11(3), 317–328 (2005)CrossRefGoogle Scholar
  11. 11.
    Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Medical Image Analysis, 13(6), 912–919 (2009)Google Scholar
  12. 12.
    Taylor, Z.A., Comas, O., Cheng, M., Passenger, J., Hawkes, D.J., Atkinson, D., Ourselin, S.: On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution. Medical Image Analysis, 13(2), 234–244 (2009)CrossRefGoogle Scholar
  13. 13.
    Delingette, H.: Triangular springs for modeling nonlinear membranes. IEEE Transactions on Visualization and Computer Graphics, 14(2), 329–341 (2008)CrossRefGoogle Scholar
  14. 14.
    Bower, A.F.: Applied mechanics of solids. CRC, Boca Raton, FL (2009)Google Scholar
  15. 15.
    Weiss, J.A., Gardiner, J.C.: Computational modeling of ligament mechanics. Critical Reviews in Biomedical Engineering, 29(4), 1–70 (2001)Google Scholar
  16. 16.
    Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Medical Image Analysis, 9, 205–221 (2005)CrossRefGoogle Scholar
  17. 17.
    Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: SOFA – an open source framework for medical simulation. In: Medicine Meets Virtual Reality (MMVR’15). Long Beach, USA (2007)Google Scholar
  18. 18.
    Baraff, D., Witkin, A.P.: Large steps in cloth simulation. In: Proceedings of the SIGGRAPH, pp. 43–54 (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tobias Heimann
    • 1
    Email author
  • François Chung
    • 1
  • Hans Lamecker
    • 1
  • Hervé Delingette
    • 1
  1. 1.Asclepios Project, INRIASophia AntipolisFrance

Personalised recommendations