Advertisement

Programming Biology in BlenX

  • Lorenzo Dematté
  • Roberto Larcher
  • Alida Palmisano
  • Corrado Priami
  • Alessandro Romanel
Chapter
Part of the Systems Biology book series (SYSTBIOL)

Abstract

We introduce a programming language called BlenX. It has been specifically designed and implemented to model and simulate biological systems and is strongly inspired to process calculi. We describe all the features of BlenX together with its supporting tools and show the application of the language on real case studies.

Keywords

Systems biology Modelling and simulation Programming languages Computational biology 

References

  1. Alberts B, Johnson A, Lewis J et al (2002) Molecular Biology of the Cell. Garland science, 4th edn. Taylor & Francis Group, LLC, New YorkGoogle Scholar
  2. Csikász-Nagy A, Faure A, Larcher R, et al (2009) Analyzing various models of circadian clock and cell cycle coupling. Formal methods in molecular biology. http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=1994
  3. Dematté L, Larcher R (2009) Visualization of BlenX complexes. TR-16-2009 CoSBiGoogle Scholar
  4. Dematté L, Priami C, Romanel A (2008) The Beta Workbench: a computational tool to study the dynamics of biological systems. Brief Bioinform 9(5):437–449PubMedCrossRefGoogle Scholar
  5. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Chem Phys 81:2340–2361CrossRefGoogle Scholar
  6. Hood L, Galas D (2003) The digital code of DNA. Nature 421:444–448PubMedCrossRefGoogle Scholar
  7. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  8. Larcher R, Priami C, Romanel A (2010) Modelling self-assembly in BlenX. Trans Comput Syst Biol XII LNCS 5945:163–198, Springer New YorkGoogle Scholar
  9. Lecca P, Priami C (2007) Cell cycle control in eukaryotes: a BioSpi model. Electr Notes Theor Comp Sci 180(3):51–63CrossRefGoogle Scholar
  10. Milner R (1989) Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River, NJGoogle Scholar
  11. Mura I, Csikász-Nagy A (2008) Stochastic Petri Net extension of a yeast cell cycle model. J Theor Biol 254(4): 850–860PubMedCrossRefGoogle Scholar
  12. Novák B, Tyson JJ (2003) Cell cycle controls. In: Computational cell biology. Springer, New York, NY, pp 261–284Google Scholar
  13. Palmisano A, Mura I, Priami C (2009) From Odes to Language-based, executable models of biological systems. In: Proceedings of pacific symposium on biocomputing 2009 (PSB 2009). The Big Island of HawaiiGoogle Scholar
  14. Priami C (1995) The stochastic pi-calculus. Comp J 38(6):578–589CrossRefGoogle Scholar
  15. Priami C (2009) Algorithmic systems biology. Comm ACM 52(5):80–88CrossRefGoogle Scholar
  16. Priami C, Quaglia P (2005) Beta Binders for biological interactions. In CMSB04, LNBI 3082:21–34Google Scholar
  17. Romanel A, Priami C (2008) On the decidability and complexity of the structural congruence for Beta-binders. Theor Comp Sci 404(1–2):156–169CrossRefGoogle Scholar
  18. Sandip K, Bauman WT, Paul MR et al (2009) Exploring the roles of noise in the eukaryotic cell cycle. Proc Natl Acad Sci 106(16):6471–6476CrossRefGoogle Scholar
  19. Sangiorgi D, Walker D (2003) The pi-calculus: a theory of mobile processes. Cambridge University Press, Cambridge, MAGoogle Scholar
  20. Steuer R (2004) Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. J Theor Biol 228(3):293–301PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lorenzo Dematté
    • 1
  • Roberto Larcher
    • 1
  • Alida Palmisano
    • 1
  • Corrado Priami
    • 1
  • Alessandro Romanel
    • 1
  1. 1.CoSBi and Università di TrentoTrentoItaly

Personalised recommendations