A Primer on Modular Mass-Action Modelling with CellML

  • Michael T. CoolingEmail author
Part of the Systems Biology book series (SYSTBIOL)


CellML is a model exchange format designed to greatly facilitate the communication of models. Here we provide a primer on modelling mass-action kinetics with CellML and discuss some of the language features for structuring models. We illustrate these with examples of simple reactions, from which we build a basic biochemical system. We explore some best practices for structuring the models to greatly aid model reusability, as well as communication, and provide information on interacting with the CellML research community. CellML source code for the models in this chapter can be found online at the CellML model Repository (Lloyd et al. 2008), at


Mass-action kinetics Mathematical modelling Systems biology CellML Modularity 


  1. Beard DA, Britten R, Cooling MT, Garny A, Halstead, MDB, Hunter PJ, Lawson J, Lloyd CM, Marsh J, Miller A, Nickerson D, Nielsen PMF, Nomura T, Subramaniam S, Wimalaratne SM, Yu T (2009) CellML metadata: standards, tools and repositories. Phil Trans R Soc A 367: 1845–1867PubMedCrossRefGoogle Scholar
  2. Cooling MT, Hunter P, Crampin EJ (2007) Modelling hypertrophic IP3 transients in the cardiac myocyte. Biophys J 93:3421–3433PubMedCentralPubMedCrossRefGoogle Scholar
  3. Cooling MT, Hunter P, Crampin EJ (2008) Modeling biological modularity with CellML. IET Sys Bio 2:73–79CrossRefGoogle Scholar
  4. Cooling MT, Hunter P, Crampin EJ (2009) Sensitivity of NFAT cycling to cytosolic calcium concentration: implication for hypertrophic signals in cardiac myocytes. Biophys J 96:2095–2104PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cuellar AA, Lloyd C M, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ (2003) An Overview of CellML 1.1, a Biological Model Description Language. Sim 79:740–747CrossRefGoogle Scholar
  6. Garny A, Nickerson DP, Cooper J, Weber dos Santos R, Miller AK, McKeever S, Nielsen PMF, Hunter P J (2008) CellML and associated tools and techniques. Phil Trans R Soc A 366:3017–3043PubMedCrossRefGoogle Scholar
  7. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML Model Repository. Bioinf 24:2122–2123CrossRefGoogle Scholar
  8. Michaelis L, Menten ML (1913) Die kinetic der invertinwirkung. Biochem Z 49:333–369Google Scholar
  9. Nickerson DP, Buist ML (2008) Practical application of CellML 1.1: The integration of new mechanisms into a human ventricular myocyte model. Prog Biophys Mol Bio 98:38–51CrossRefGoogle Scholar
  10. Nickerson DP, Buist ML (2009) A physiome standards-based model publication paradigm. Phil Trans R Soc A 367:1823–1844PubMedCrossRefGoogle Scholar
  11. Wimalaratne SM, Halstead MDB, Lloyd CM, Cooling MT, Crampin EJ, Nielsen PF (2009a) Facilitating modularity and reuse: guidelines for structuring CellML 1.1 models by isolating common biophysical concepts. Exp Phys 94:472–485CrossRefGoogle Scholar
  12. Wimalaratne SM, Halstead MDB, Lloyd CM, Crampin EJ, Nielsen PF (2009b) Biophysical annotation and representation of CellML models. Bioinf 25(17):2263–2270Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand

Personalised recommendations