A Novel Coordination Strategy for Multi-Agent Control Using Overlapping Subnetworks with Application to Power Systems

  • R. R. NegenbornEmail author
  • G. Hug-Glanzmann
  • B. De Schutter
  • G. Andersson


Power networks [15,16,24] are one of the corner stones of our modern society. The dynamics of a power network as a whole are the result of the interactions between themillions of individual components.Conventionally, the power in power networks is generated using several large power generators. This power is then transported through the transmission and distribution network to the location where it is consumed, e.g., households and industry. Power flows are then relatively predictable, and the number of control agents is relatively low. Due to the ongoing deregulation in the power generation and distribution sector in the US and Europe, the number of players involved in the generation and distribution of power has increased R. significantly. The number of source nodes of the power distribution network is increasing even further as also large-scale industrial suppliers and small-scale individual households start to feed electricity into the network [13].


Control Agent Multiagent System Soft Constraint External Variable Power Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arnold, R. R. Negenborn, G. Andersson, and B. De Schutter. Multi-area predictive control for combined electricity and natural gas systems. In Proceedings of the European Control Conference 2009, Budapest, Hungary, August 2009Google Scholar
  2. 2.
    R. D. Christie. Power Systems Test Case Archive. URL:, 2008. Last accessed at May 23, 2008
  3. 3.
    A. J. Conejo, F. J. Nogales, and F. J. Prieto. A decomposition procedure based on approximate Newton directions. Mathematical Programming, Series A, 93(3):495–515, December 2002zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. F. Daganzo. Fundamentals of Transportation and Traffic Operations. Pergamon Press, New York, 1997Google Scholar
  5. 5.
    A. Edris, R. Adapa, M. H. Baker, L. Bohmann, K. Clark, K. Habashi, L. Gyugyi, J. Lemay, A. S. Mehraban, A. K. Meyers, J. Reeve, F. Sener, D. R. Torgerson, and R. R. Wood. Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Transactions on Power Delivery, 12(4):1848–1853, October 1997CrossRefGoogle Scholar
  6. 6.
    P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Journal on Optimisation, 12(4):979–1006, 2002zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Glanzmann and G. Andersson. Using FACTS devices to resolve congestions in transmission grids. In Proceedings of the CIGRE/IEEE PES International Symposium, San Antonio, TX, October 2005Google Scholar
  8. 8.
    G. Glanzmann and G. Andersson. FACTS control for large power systems incorporating security aspects. In Proceedings of X SEPOPE, Florianopolis, Brazil, May 2006Google Scholar
  9. 9.
    P. Hines, L. Huaiwei, D. Jia, and S. Talukdar. Autonomous agents and cooperation for the control of cascading failures in electric grids. In Proceedings of the 2005 IEEE International Conference on Networking, Sensing and Control, pages 273–278, Tucson, AZ, March 2005Google Scholar
  10. 10.
    N. G. Hingorani and L. Gyugyi. Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York, New York, 2000Google Scholar
  11. 11.
    K. Holmström, A. O. Göran, and M. M. Edvall. User’s guide for Tomlab /SNOPT, December 2006Google Scholar
  12. 12.
    G. Hug-Glanzmann, R. R. Negenborn, G. Andersson, B. De Schutter, and J. Hellendoorn. Multi-area control of overlapping areas in power systems for FACTS control. In Proceedings of Power Tech 2007, Lausanne, Switzerland, July 2007. Paper 277Google Scholar
  13. 13.
    N. Jenkins, R. Allan, P. Crossley, D. Kirschen, and G. Strbac. Embedded Generation. TJ International, Padstow, UK, 2000Google Scholar
  14. 14.
    B. H. Kim and R. Baldick. A comparison of distributed optimal power flow algorithms. IEEE Transactions on Power Systems, 15(2):599–604, May 2000CrossRefGoogle Scholar
  15. 15.
    P. Kundur. Power System Stability and Control. McGraw-Hill, New York, New York, 1994Google Scholar
  16. 16.
    J. Machowski, J. Bialek, and J. R. Bumby. Power System Dynamics and Stability. Wiley, New York, New York, 1997Google Scholar
  17. 17.
    Mathworks. Matlab. URL:, 2007
  18. 18.
    R. R. Negenborn. Multi-Agent Model Predictive Control with Applications to Power Networks. PhD thesis, Delft University of Technology, Delft, The Netherlands, December 2007Google Scholar
  19. 19.
    R. R. Negenborn, B. De Schutter, and J. Hellendoorn. Multi-agent model predictive control for transportation networks: Serial versus parallel schemes. Engineering Applications of Artificial Intelligence, 21(3):353–366, April 2008CrossRefGoogle Scholar
  20. 20.
    R. R. Negenborn, S. Leirens, B. De Schutter, and J. Hellendoorn. Supervisory nonlinear MPC for emergency voltage control using pattern search. Control Engineering Practice, 17(7): 841–848, July 2009CrossRefGoogle Scholar
  21. 21.
    R. R. Negenborn, P. J. van Overloop, T. Keviczky, and B. De Schutter. Distributed model predictive control for irrigation canals. Networks and Heterogeneous Media, 4(2):359–380, June 2009zbMATHCrossRefGoogle Scholar
  22. 22.
    F. J. Nogales, F. J. Prieto, and A. J. Conejo. Multi-area AC optimal power flow: A new decomposition approach. In Proceedings of the 13th Power Systems Control Conference (PSCC), pages 1201–1206, Trondheim, Germany, 1999Google Scholar
  23. 23.
    A. J. Osiadacz. Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston, TX, 1987Google Scholar
  24. 24.
    P. W. Sauer and M. A. Pai. Power System Dynamics and Stability. Prentice-Hall, London, UK, 1998Google Scholar
  25. 25.
    K. P. Sycara. Multiagent systems. AI Magazine, 2(19):79–92, 1998Google Scholar
  26. 26.
    D. D. SZiljakŠiljak. Decentralized Control of Complex Systems. Academic, Boston, Massachusetts, 1991Google Scholar
  27. 27.
    G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge, Massachusetts, 2000Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. R. Negenborn
    • 1
    Email author
  • G. Hug-Glanzmann
    • 2
  • B. De Schutter
    • 1
    • 3
  • G. Andersson
    • 4
  1. 1.Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghPennsylvania
  3. 3.Department of Marine and Transport TechnologyDelft University of TechnologyDelftThe Netherlands
  4. 4.Power Systems LaboratoryETH ZürichZürichSwitzerland

Personalised recommendations