Mechanics of Generalized Continua pp 27-35

Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 21) | Cite as

On the Theories of Plates Based on the Cosserat Approach

Chapter

Abstract

The classical isotropic linear elastic material behavior is presented by two material parameters, e.g., the Young’s modulus and the Poisson’s ratio, while the Cosserat continuum is given by six material parameters. The latter continuum model can be the starting point for the deduction of the governing equations of the Cosserat plate theory via a through-the-thickness integration. In contrast, the basic equations of the Cosserat plate theory can be established applying the direct approach. It can be shown that both systems of equations are similar in the main terms. The assumed identity of both systems results in consistent stiffness parameters identification for the two-dimensional theory based on the direct approach and, in addition, in some constraints. Using the experimental results of Lakes, one can show in which cases the additional material properties coming from the tree-dimensional Cosserat material model have a significant influence on the stiffness parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. Z. Angew. Math. Mech. 4(89), 242–256 (2009) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Altenbach, H., Zhilin, P.A.: A general theory of elastic simple shells. Usp. Mekh. 11(4) (1988). In Russian Google Scholar
  3. 3.
    Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells. A short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010) MATHCrossRefGoogle Scholar
  4. 4.
    Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych. Nieliniowa teoria i metoda elementów skończonych. Wydawnictwo IPPT PAN, Warszawa (2004) Google Scholar
  5. 5.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables. Herman et Fils, Paris (1909) Google Scholar
  6. 6.
    Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eremeyev, V.A., Zubov, L.M.: On constitutive inequalities in nonlinear theory of elastic shells. Z. Angew. Math. Mech. 87(2), 94–101 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eremeyev, V.A., Zubov, L.M.: Mechanics of Elastic Shells. Nauka, Moscow (2008). In Russian Google Scholar
  9. 9.
    Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999) Google Scholar
  11. 11.
    Kröner, E. (ed.): Mechanics of Generalized Continua. Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967, vol. 16. Springer, Berlin (1968) MATHGoogle Scholar
  12. 12.
    Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986) CrossRefGoogle Scholar
  13. 13.
    Lakes, R.S.: Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. ASME. J. Eng. Mat. Technol. 113, 148–155 (1991) CrossRefGoogle Scholar
  14. 14.
    Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998) MATHCrossRefGoogle Scholar
  15. 15.
    Lurie, A.I.: Theory of Elasticity. Foundations of Engineering Mechanics. Springer, Berlin (2005) Google Scholar
  16. 16.
    Naghdi, P.: The theory of plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972) Google Scholar
  17. 17.
    Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000) MATHGoogle Scholar
  18. 18.
    Truesdell, C.: Die Entwicklung des Drallsatzes. Z. Angew. Math. Mech. 44(4/5), 149–158 (1964) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zubov, L.M.: Micropolar-shell equilibrium equations. Dokl. Phys. 54(6), 290–293 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Martin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.South Scientific Center of RASci & South Federal UniversityRostov on DonRussia

Personalised recommendations