Analysis of Parallel Spike Trains pp 253-280

Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 7) | Cite as

Higher-Order Correlations and Cumulants

Abstract

Recent advances in electrophysiological and imaging techniques have highlighted the need for correlation measures that go beyond simple pairwise analyses. In this chapter, we discuss cumulant correlations as natural and intuitive higher-order generalizations of the covariance. In particular, we show how cumulant correlations fit to a frequently used additive model of correlation, an idea that mimics correlations among spike trains that originate from overlapping input pools. Finally, we compare the cumulant correlations to the interaction parameters of the well-known exponential family by computing the respective parameters for two different models. We find that the different frameworks measure entirely different aspects, so that populations can have higher-order correlations in one framework but none in the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahadur R (1961) A representation of the joint distribution of responses to n dichotomous items. In: Solomon H (ed) Studies in item analysis and prediction. Stanford University Press, Stanford, pp 158–168 Google Scholar
  2. Bair W, Zohary E, Newsome W (2001) Correlated firing in Macaque visual area MT: time scales and relationship to behavior. J Neurosci 21:1676–1697 PubMedGoogle Scholar
  3. Bell A, Sejnowski T (1996) Learning the higher-order structure of a natural sound. Network Comput Neural Syst 7:261–266 CrossRefGoogle Scholar
  4. Blaschke T, Wiskott L (2004) CuBICA: independent component analysis by simultaneous third- and fourth-order cumulant diagonalization. IEEE Trans Signal Process 52:1250–1256 CrossRefGoogle Scholar
  5. Bohte SM, Spekreijse H, Roelfsema PR (2000) The effects of pair-wise and higher-order correlations on the firing rate of a postsynaptic neuron. Neural Comput 12:153–179 CrossRefPubMedGoogle Scholar
  6. Brette R (2009) Generation of correlated spike trains. Neural Comput 21:188–215 CrossRefPubMedGoogle Scholar
  7. Brillinger D (1996) Uses of cumulants in wavelet analysis. J Nonparam Statist 6:93–114 CrossRefGoogle Scholar
  8. Darroch J, Speed T (1983) Additive and multiplicative models and interactions. Ann Statist 11:724–738 CrossRefGoogle Scholar
  9. De la Rocha J, Doiron B, Shea-Brown E, Kresimir J, Reyes A (2007) Correlation between neural spike trains increases with firing rate. Nature 448:802–807 CrossRefPubMedGoogle Scholar
  10. Di Nardo E, Guarino G, Senato D (2008) A unifying framework for k-statistics, polykays and their multivariate generalizations. Bernoulli 14:440–468 CrossRefGoogle Scholar
  11. Ehm W, Staude B, Rotter S (2007) Decomposition of neuronal assembly activity via empirical de-Poissonization. Electron J Statist 1:473–495 CrossRefGoogle Scholar
  12. Fujisawa S, Amarasingham A, Harrison M, Buzsaki G (2008) Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neurosci 11:823–833 CrossRefPubMedGoogle Scholar
  13. Gardiner CW (2003) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer Series in Synergetics, vol 13, 3rd edn. Springer, Berlin Google Scholar
  14. Gerstein GL, Bedenbaugh P, Aertsen A (1989) Neuronal assemblies. IEEE Trans Biomed Eng 36:4–14 CrossRefPubMedGoogle Scholar
  15. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702 CrossRefPubMedGoogle Scholar
  16. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York Google Scholar
  17. Holgate P (1964) Estimation for the bivariate Poisson distribution. Biometrika 51:241–245 Google Scholar
  18. Ince RAA, Montani F, Arabzadeh E, Diamond ME, Panzeri S (2009a) On the presence of high-order interactions among somatosensory neurons and their effect on information transmission. In: Proceedings of the international workshop on statistical mechanical informatics, pp 1–11 Google Scholar
  19. Ince RAA, Petersen RS, Swan DC, Panzeri S (2009b) Python for information theoretic analysis of neural data. Frontiers Neuroinform 3:Article 4 Google Scholar
  20. Ip E, Wang Y, Yeh Y (2004) Structural decompositions of multivariate distributions with applications in moment and cumulant. J Multivariate Anal 89:119–134 CrossRefGoogle Scholar
  21. Jaynes E (1957a) Information theory and statistical mechanics. Phys Rev 106:620–630 CrossRefGoogle Scholar
  22. Jaynes E (1957b) Information theory and statistical mechanics. II. Phys Rev 108:171–190 CrossRefGoogle Scholar
  23. Johnson D, Goodman I (2007) Jointly Poisson processes. arXiv:0911.2524
  24. Johnson D, Goodman I (2008) Inferring the capacity of the vector Poisson channel with a Bernoulli model. Network Comput Neural Syst 19:13–33 CrossRefGoogle Scholar
  25. Karlis D, Meligkotsidou L (2005) Multivariate Poisson regression with covariance structure. Stat Comput 15:255–265 CrossRefGoogle Scholar
  26. Kawamura K (1979) The structure of multivariate Poisson distribution. Kodai Math J 2:337–345 CrossRefGoogle Scholar
  27. Kohn A, Smith MA (2005) Stimulus dependence of neuronal correlations in primary visual cortex of the Macaque. J Neurosci 25:3661–3673 CrossRefPubMedGoogle Scholar
  28. Kohn A, Zandvakili A, Smith MA (2009) Correlations and brain states: from electrophysiology to functional imaging. Curr Opin Neurobiol 19:1–5 CrossRefGoogle Scholar
  29. Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput 1:67–101 CrossRefGoogle Scholar
  30. Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55:1268–1282 PubMedGoogle Scholar
  31. Lancaster H (1958) The structure of bivariate distributions. Ann Math Statist 29:719–736 CrossRefGoogle Scholar
  32. Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Progr Neurobiol 65:545–591 CrossRefGoogle Scholar
  33. Martignon L, von Hasseln H, Grün S, Aertsen A, Palm G (1995) Detecting higher-order interactions among the spiking events in a group of neurons. Biol Cybern 73:69–81 CrossRefPubMedGoogle Scholar
  34. Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E (2000) Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput 12:2621–2653 CrossRefPubMedGoogle Scholar
  35. Mattner L (2004) Cumulants are universal homomorphisms into Hausdorff groups. Probab Theory Related Fields 130:151–166 Google Scholar
  36. Montani F, Ince RAA, Senatore R, Arabzadeh E, Diamond ME, Panzeri S (2009) The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 367:3297–3310 CrossRefGoogle Scholar
  37. Nakahara H, Amari S (2002) Information-geometric measure for neural spikes. Neural Comput 10:2269–2316 CrossRefGoogle Scholar
  38. Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, Boston Google Scholar
  39. Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278:1950–1953 CrossRefPubMedGoogle Scholar
  40. Roudi Y, Nirenberg S, Latham PE (2009) Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t. PLoS Comput Biol 5:e1000380 CrossRefPubMedGoogle Scholar
  41. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550 CrossRefPubMedGoogle Scholar
  42. Sarmanov O (1962) Maximum correlation coefficient (nonsymmetric case). In: Selected translations in mathematical statistics and probability, vol 4. Am Math Soc, Providence, pp 271–275 Google Scholar
  43. Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–1012 CrossRefPubMedGoogle Scholar
  44. Shea-Brown E, Josic K, de la Rocha J, Doiron B (2008) Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Phys Rev Lett 100:108102 CrossRefPubMedGoogle Scholar
  45. Shimazaki H, Amari S, Brown EN, Grün S (2009) State-space analysis on time-varying correlations in parallel spike sequences. In: Proc IEEE international conference on acoustics speech and signal processing ICASSP, pp 3501–3504 Google Scholar
  46. Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ (2006) The structure of multi-neuron firing patterns in primate retina. J Neurosci 26:8254–8266 CrossRefPubMedGoogle Scholar
  47. Staude B, Rotter S, Grün S (2008) Can spike coordination be differentiated from rate covariation?. Neural Comput 20:1973–1999 CrossRefPubMedGoogle Scholar
  48. Staude B, Rotter S, Grün S (2009) CuBIC: cumulant based inference of higher-order correlations. J Comp Neurosci. doi: 10.1007/s10827-009-0195-x Google Scholar
  49. Staude B, Grün S, Rotter S (2010) Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference. Frontiers Computat Neurosci 4:16. doi:10.3389/fncom.2010.00016 Google Scholar
  50. Stratonovich RL (1967) Topics in the theory of random noise. Gordon & Breach Science, New York Google Scholar
  51. Streitberg B (1990) Lancaster interactions revisited. Ann Statist 18:1878–1885 CrossRefGoogle Scholar
  52. Streitberg B (1999) Exploring interactions in high-dimensional tables: a bootstrap alternative to log-linear models. Ann Statist 27:405–413 CrossRefGoogle Scholar
  53. Stuart A, Ord JK (1987) Kendall’s advanced theory of statistics, 5th edn. Griffin and Co, London Google Scholar
  54. Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M (2008) Dependence of neuronal correlations on filter characteristics and marginal spike-train statistics. Neural Comput 20:2133–2184 CrossRefPubMedGoogle Scholar
  55. Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373:515–518 CrossRefPubMedGoogle Scholar
  56. Wolfram Research, Inc (2008) Mathematica edition: version 7.0. Wolfram Research, Inc, Champaign Google Scholar
  57. Womelsdorf T, Fries P (2007) The role of neuronal synchronization in selective attention. Curr Opin Neurobiol 17:154–160 CrossRefPubMedGoogle Scholar
  58. Zhou DL, Zeng B, Xu Z, You L (2006) Multiparty correlation measure based on the cumulant. Phys Rev A 74:052110 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Bernstein Center FreiburgAlbert-Ludwig UniversityFreiburgGermany
  2. 2.Laboratory for Statistical NeuroscienceRIKEN Brain Science InstituteWakoshiJapan
  3. 3.Bernstein Center Freiburg & Faculty of BiologyAlbert-Ludwig UniversityFreiburgGermany

Personalised recommendations