Elucidating the In Vivo Targets of Photorhabdus Toxins in Real-Time Using Drosophila Embryos

  • Isabella Vlisidou
  • Nicholas Waterfield
  • Will Wood
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 710)


The outcome of any bacterial infection, whether it is clearance of the infecting pathogen, establishment of a persistent infection, or even death of the host, is as dependent on the host as on the pathogen (Finlay and Falkow 1989). To infect a susceptible host bacterial pathogens express virulence factors, which alter host cell physiology and allow the pathogen to establish a nutrient-rich niche for growth and avoid clearance by the host immune response. However survival within the host often results in tissue damage, which to some cases accounts for the disease-specific pathology. For many bacterial pathogens the principal determinants of virulence and elicitors of host tissue damage are soluble exotoxins, which allow bacteria to penetrate into deeper tissue or pass through a host epithelial or endothelial barrier. Therefore, exploring the complex interplay between host tissue and bacterial toxins can help us to understand infectious disease and define the contributions of the host immune system to bacterial virulence. In this chapter, we describe a new model, the Drosophila embryo, for addressing a fundamental issue in bacterial pathogenesis, the elucidation of the in vivo targets of bacterial toxins and the monitoring of the first moments of the infection process in real-time. To develop this model, we used the insect and emerging human pathogen Photorhabdus asymbiotica and more specifically we characterised the initial cross-talk between the secreted cytotoxin Mcf1 and the embryonic hemocytes. Mcf1 is a potent cytotoxin which has been detected in all Photorhabdus strains isolated so far, which can rapidly kill insects upon injection. Despite several in vitro tissue culture studies, the biology of Mcf1 in vivo is not well understood. Furthermore, despite the identification of many Photorhabdus toxins using recombinant expression in E. coli (Waterfield et al. 2008), very few studies address the molecular mechanism of action of these toxins in relation to specific immune responses in vivo in the insect model.


  1. Bataillé L, Augé B, Ferjoux G, Haenlin M, Waltzer L (2005) Resolving embryonic blood cell fate choice in Drosophila: interplay of GCM and RUNX factors. Development 132(20):4635–4644PubMedCrossRefGoogle Scholar
  2. Blow NS, Salomon RN, Garrity K, Reveillaud I, Kopin A et al (2005) Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathog 1:e8PubMedCrossRefGoogle Scholar
  3. Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ et al (2004) Secreted bacterial effectors and host-produced Eiger/TNF drive death in a Salmonella-infected fruit fly. PLoS Biol 2:e418PubMedCrossRefGoogle Scholar
  4. Brugirard-Ricaud K, Duchaud E, Givaudan A, Girard PA, Kunst F, Boemare N, Brehélin M, Zumbihl R (2005) Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell Microbiol 7(3):363–371PubMedCrossRefGoogle Scholar
  5. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116(2):167–179PubMedCrossRefGoogle Scholar
  6. Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69(4):1890–1897PubMedCrossRefGoogle Scholar
  7. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74(8):2275–2287PubMedCrossRefGoogle Scholar
  8. Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci USA 99(16):10742–10747Google Scholar
  9. Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4(7):e229PubMedCrossRefGoogle Scholar
  10. Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH et al (2004) The insecticidal toxin makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 6:345–353PubMedCrossRefGoogle Scholar
  11. Dowling AJ, Waterfield NR, Hares MC, Le Goff G, Streuli CH et al (2007) The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cell Microbiol 9:2470–2484PubMedCrossRefGoogle Scholar
  12. Eleftherianos I, Millichap PJ, ffrench-Constant RH, Reynolds SE (2006a) RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev Comp Immunol 30(12):1099–1107PubMedCrossRefGoogle Scholar
  13. Eleftherianos I, Marokhazi J, Millichap PJ, Hodgkinson AJ, Sriboonlert A, ffrench-Constant RH, Reynolds SE (2006b) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol Biol 36(6):517–525PubMedCrossRefGoogle Scholar
  14. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104(7):2419–2424PubMedCrossRefGoogle Scholar
  15. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635PubMedCrossRefGoogle Scholar
  16. Farmer JJ 3rd, Jorgensen JH, Grimont PA, Akhurst RJ, Poinar GO Jr, Ageron E, Pierce GV, Smith JA, Carter GP, Wilson KL et al (1989) Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 27(7):1594–1600PubMedGoogle Scholar
  17. Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Rev 53(2):210–230PubMedGoogle Scholar
  18. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. Luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. Temperate subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49 Pt 4:1645–1656PubMedCrossRefGoogle Scholar
  19. Fleming V, Feil E, Sewell AK, Day N, Buckling A et al (2006) Agr interference between clinical Staphylococcus aureus strains in an insect model of virulence. J Bacteriol 188:7686–7688PubMedCrossRefGoogle Scholar
  20. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72PubMedCrossRefGoogle Scholar
  21. Frandsen JL, Gunn B, Muratoglu S, Fossett N, Newfeld SJ (2008) Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc Natl Acad Sci USA 105:14952–14957PubMedCrossRefGoogle Scholar
  22. Gerrard JG, Vohra R, Nimmo GR (2003) Identification of Photorhabdus asymbiotica in cases of human infection. Commun Dis Intell 27(4):540–541PubMedGoogle Scholar
  23. Gerrard J, Waterfield N, Vohra R, ffrench-Constant R (2004) Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect 6:229–237PubMedCrossRefGoogle Scholar
  24. Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643PubMedCrossRefGoogle Scholar
  25. Hallem EA, Rengarajan M, Ciche TA, Sternberg PW (2007) Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 17(10):898–904, Epub 3 May 2007PubMedCrossRefGoogle Scholar
  26. Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins of hemocytes in Drosophila. Development 130(20):4955–4962PubMedCrossRefGoogle Scholar
  27. Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P (2000) Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr Biol 10(22):1420–1426PubMedCrossRefGoogle Scholar
  28. Jacinto A, Wood W, Woolner S, Hiley C, Turner L, Wilson C, Martinez-Arias A, Martin P (2002) Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr Biol 12(14):1245–1250PubMedCrossRefGoogle Scholar
  29. Kim Y, Ji D, Cho S, Park Y (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J Invertebr Pathol 89(3):258–264PubMedCrossRefGoogle Scholar
  30. Kim SH, Park SY, Heo YJ, Cho YH (2008) Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect Immun 76:4152–4162PubMedCrossRefGoogle Scholar
  31. Kitamoto T (2001) Conditional modification of behaviour in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47:81–92PubMedCrossRefGoogle Scholar
  32. Mandal L, Dumstrei K, Hartenstein V (2004) Role of FGFR signaling in the morphogenesis of the Drosophila visceral musculature. Dev Dyn 231(2):342–348Google Scholar
  33. Olofsson B, Page DT (2005) Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev Biol 279(1):233–243PubMedCrossRefGoogle Scholar
  34. Paladi M, Tepass U (2004) Function of Rho GTPases in embryonic blood cell migration in Drosophila. J Cell Sci 117(Pt 26):6313–6326PubMedCrossRefGoogle Scholar
  35. Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM, McDougall RJ, Scullie BL, Akhurst RJ (1999) Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 37(11):3647–3653PubMedGoogle Scholar
  36. Pielage JF, Powell KR, Kalman D, Engel JN (2008) RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 4(3):e1000031PubMedCrossRefGoogle Scholar
  37. Shirasu-Hiza MM, Schneider DS (2007) Confronting physiology: how do infected flies die? Cell Microbiol 9(12):2775–2783PubMedCrossRefGoogle Scholar
  38. Silva CP, Waterfield NR, Daborn PJ, Dean P, Chilver T, Au CP, Sharma S, Potter U, Reynolds SE, ffrench-Constant RH (2002) Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell Microbiol 4(6):329–339PubMedCrossRefGoogle Scholar
  39. Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, Martin P (2005) Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 168(4):567–573PubMedCrossRefGoogle Scholar
  40. Stuart LM, Boulais J, Charriere GM, Hennessy EJ, Brunet S, Jutras I, Goyette G, Rondeau C, Letarte S, Huang H, Ye P, Morales F, Kocks C, Bader JS, Desjardins M, Ezekowitz RA (2007) A systems biology analysis of the Drosophila phagosome. Nature 445(7123):95–101Google Scholar
  41. Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837PubMedGoogle Scholar
  42. Vlisidou I, Dowling AJ, Evans IR, Waterfield N, ffrench-Constant RH, Wood W (2009) Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 5(7):e1000518PubMedCrossRefGoogle Scholar
  43. Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Yang G, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, ffrench-Constant RH (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci USA 105(41):15967–15972PubMedCrossRefGoogle Scholar
  44. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574PubMedCrossRefGoogle Scholar
  45. Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309(5742):1874–1878PubMedCrossRefGoogle Scholar
  46. Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC (2004) Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118(5):619–633PubMedCrossRefGoogle Scholar
  47. Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL (2007) A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130(6):1134–1145PubMedCrossRefGoogle Scholar
  48. Wood W, Jacinto A (2007) Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat Rev Mol Cell Biol 8(7):542–551PubMedCrossRefGoogle Scholar
  49. Woolner S, Jacinto A, Martin P (2005) The small GTPase Rac plays multiple roles in epithelial sheet fusion–dynamic studies of Drosophila dorsal closure. Dev Biol 282(1):163–173PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Isabella Vlisidou
    • 1
  • Nicholas Waterfield
    • 1
  • Will Wood
    • 1
  1. 1.Department of Biology and BiochemistryUniversity of BathBathUK

Personalised recommendations