The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and Role in Retinal Disease

  • Yaroslav Tsybovsky
  • Robert S. Molday
  • Krzysztof Palczewski
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 703)

Abstract

ATP-binding cassette transporters (ABC transporters) utilize the energy of ATP hydrolysis to translocate an unusually diverse set of substrates across cellular membranes. ABCA4, also known as ABCR, is a ∼250 kDa single-chain ABC transporter localized to the disk margins of vertebrate photoreceptor outer segments. It is composed of two symmetrically organized halves, each comprising six membrane-spanning helices, a large glycosylated exocytoplasmic domain located inside the disk, and a cytoplasmic domain with an ATP-binding cassette. Hundreds of mutations in ABCA4 are known to cause impaired vision and blindness such as in Stargardt disease as well as related disorders. Biochemical and animal model studies in combination with patient analyses suggest that the natural substrate of ABCA4 is retinylidene-phosphatidylethanolamine (N-retinylidene-PE), a precursor of potentially toxic diretinal compounds. ABCA4 prevents accumulation of N-retinylidene-PE inside the disks by transporting it to the cytoplasmic side of the disk membrane where it can dissociate, allowing the released all-trans-retinal to enter the visual cycle. The pathogenesis of diseases caused by mutations in ABCA4 is complex, comprising a loss-of-function component as well as photoreceptor stress caused by protein mislocalization and misfolding.

References

  1. Ahn J, Molday RS (2000) Purification and characterization of ABCR from bovine rod outer segments. Methods Enzymol 315:864–879PubMedCrossRefGoogle Scholar
  2. Ahn J, Wong JT, Molday RS (2000) The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy. J Biol Chem 275:20399–20405PubMedCrossRefGoogle Scholar
  3. Ahn J, Beharry S, Molday LL, Molday RS (2003) Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain. J Biol Chem 278:39600–39608PubMedCrossRefGoogle Scholar
  4. Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H (2005) Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 115:1777–1784PubMedCrossRefGoogle Scholar
  5. Allikmets R (2000) Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet 67:793–799PubMedCrossRefGoogle Scholar
  6. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M (1997a) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807PubMedCrossRefGoogle Scholar
  7. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997b) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246PubMedCrossRefGoogle Scholar
  8. Azarian SM, Travis GH (1997) The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR). FEBS Lett 409:247–252PubMedCrossRefGoogle Scholar
  9. Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–53979PubMedCrossRefGoogle Scholar
  10. Bhongsatiern J, Ohtsuki S, Tachikawa M, Hori S, Terasaki T (2005) Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. J Neurochem 92:1277–1280PubMedCrossRefGoogle Scholar
  11. Biswas EE (2001) Nucleotide binding domain 1 of the human retinal ABC transporter functions as a general ribonucleotidase. Biochemistry 40:8181–8187PubMedCrossRefGoogle Scholar
  12. Biswas EE, Biswas SB (2000) The C-terminal nucleotide binding domain of the human retinal ABCR protein is an adenosine triphosphatase. Biochemistry 39:15879–15886PubMedCrossRefGoogle Scholar
  13. Biswas-Fiss EE (2003) Functional analysis of genetic mutations in nucleotide binding domain 2 of the human retina specific ABC transporter. Biochemistry 42:10683–10696PubMedCrossRefGoogle Scholar
  14. Biswas-Fiss EE (2006) Interaction of the nucleotide binding domains and regulation of the ATPase activity of the human retina specific ABC transporter, ABCR. Biochemistry 45:3813–3823PubMedCrossRefGoogle Scholar
  15. Bungert S, Molday LL, Molday RS (2001) Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. J Biol Chem 276:23539–23546PubMedCrossRefGoogle Scholar
  16. Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB, Windsor EA, Roman AJ, Sumaroka A, Steinberg JD, Jacobson SG, Stone EM, Palczewski K (2009) ABCA4 disease progression and a proposed strategy for gene therapy. Hum Mol Genet 18:931–941PubMedGoogle Scholar
  17. Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268PubMedCrossRefGoogle Scholar
  18. Dawson RJ, Hollenstein K, Locher KP (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65:250–257PubMedCrossRefGoogle Scholar
  19. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726PubMedCrossRefGoogle Scholar
  20. Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW (2002) Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J Biol Chem 277:33178–33187PubMedCrossRefGoogle Scholar
  21. Gerber S, Comellas-Bigler M, Goetz BA, Locher KP (2008) Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321:246–250PubMedCrossRefGoogle Scholar
  22. Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7PubMedCrossRefGoogle Scholar
  23. Harpaz Y, Gerstein M, Chothia C (1994) Volume changes on protein folding. Structure 2:641–649PubMedCrossRefGoogle Scholar
  24. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113PubMedCrossRefGoogle Scholar
  25. Ho MT, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem 264:928–935PubMedGoogle Scholar
  26. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40:737–743PubMedGoogle Scholar
  27. Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310PubMedCrossRefGoogle Scholar
  28. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 280:39732–39739PubMedCrossRefGoogle Scholar
  29. Kashiwagi K, Endo H, Kobayashi H, Takio K, Igarashi K (1995) Spermidine-preferential uptake system in Escherichia coli. ATP hydrolysis by PotA protein and its association with membrane. J Biol Chem 270:25377–25382PubMedCrossRefGoogle Scholar
  30. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392PubMedCrossRefGoogle Scholar
  31. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166PubMedCrossRefGoogle Scholar
  32. Kolling R, Losko S (1997) The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein. EMBO J 16:2251–2261PubMedCrossRefGoogle Scholar
  33. Kos V, Ford RC (2009) The ATP-binding cassette family: a structural perspective. Cell Mol Life Sci 66:3111–3126PubMedCrossRefGoogle Scholar
  34. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  35. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M (1999) Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 64:422–434PubMedCrossRefGoogle Scholar
  36. Linton KJ, Higgins CF (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 453:555–567PubMedCrossRefGoogle Scholar
  37. Maeda A, Maeda T, Sun W, Zhang H, Baehr W, Palczewski K (2007) Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proc Natl Acad Sci USA 104:19565–19570PubMedCrossRefGoogle Scholar
  38. Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693PubMedCrossRefGoogle Scholar
  39. Maeda A, Golczak M, Maeda T, Palczewski K (2009a) Limited roles of Rdh8, Rdh12 and Abca4 on all-trans-retinal clearance in mouse retina. Invest Ophthalmol Vis Sci 50(11):5435–5443PubMedCrossRefGoogle Scholar
  40. Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL, Matsuyama S, Palczewski K (2009b) Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem 284:15173–15183PubMedCrossRefGoogle Scholar
  41. Maeda T, Maeda A, Matosky M, Okano K, Roos S, Tang J, Palczewski K (2009c) Evaluation of potential therapies for a mouse model of human age-related macular degeneration caused by delayed all-trans-retinal clearance. Invest Ophthalmol Vis Sci 50:4917–4925PubMedCrossRefGoogle Scholar
  42. Martinez LO, Agerholm-Larsen B, Wang N, Chen W, Tall AR (2003) Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J Biol Chem 278:37368–37374PubMedCrossRefGoogle Scholar
  43. Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzalez-Duarte R, Balcells S (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12PubMedCrossRefGoogle Scholar
  44. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97:7154–7159PubMedCrossRefGoogle Scholar
  45. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690PubMedGoogle Scholar
  46. Molday RS (2007) ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr 39:507–517PubMedCrossRefGoogle Scholar
  47. Molday RS, Molday LL (1979) Identification and characterization of multiple forms of rhodopsin and minor proteins in frog and bovine rod outer segment disc membranes. Electrophoresis, lectin labeling, and proteolysis studies. J Biol Chem 254:4653–4660PubMedGoogle Scholar
  48. Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25:257–258PubMedCrossRefGoogle Scholar
  49. Molday RS, Zhong M, Quazi F (2009) The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta 1791:573–583PubMedCrossRefGoogle Scholar
  50. Mourez M, Hofnung M, Dassa E (1997) Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16:3066–3077PubMedCrossRefGoogle Scholar
  51. Mustafi D, Engel AH, Palczewski K (2009) Structure of cone photoreceptors. Prog Retin Eye Res 28:289–302PubMedCrossRefGoogle Scholar
  52. Nickell S, Park PS, Baumeister W, Palczewski K (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925PubMedCrossRefGoogle Scholar
  53. Noe J, Hagenbuch B, Meier PJ, St-Pierre MV (2001) Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 33:1223–1231PubMedCrossRefGoogle Scholar
  54. Palczewski K, Jager S, Buczylko J, Crouch RK, Bredberg DL, Hofmann KP, Asson-Batres MA, Saari JC (1994) Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry 33:13741–13750PubMedCrossRefGoogle Scholar
  55. Papermaster DS, Schneider BG, Zorn MA, Kraehenbuhl JP (1978) Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol 78:415–425PubMedCrossRefGoogle Scholar
  56. Papermaster DS, Reilly P, Schneider BG (1982) Cone lamellae and red and green rod outer segment disks contain a large intrinsic membrane protein on their margins: an ultrastructural immunocytochemical study of frog retinas. Vision Res 22:1417–1428PubMedCrossRefGoogle Scholar
  57. Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol 90:1060–1066PubMedCrossRefGoogle Scholar
  58. Pawar AS, Qtaishat NM, Little DM, Pepperberg DR (2008) Recovery of rod photoresponses in ABCR-deficient mice. Invest Ophthalmol Vis Sci 49:2743–2755PubMedCrossRefGoogle Scholar
  59. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedCrossRefGoogle Scholar
  60. Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933PubMedCrossRefGoogle Scholar
  61. Rando RR, Bangerter FW (1982) The rapid intermembraneous transfer of retinoids. Biochem Biophys Res Commun 104:430–436PubMedCrossRefGoogle Scholar
  62. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227PubMedCrossRefGoogle Scholar
  63. Roof DJ, Heuser JE (1982) Surfaces of rod photoreceptor disk membranes: integral membrane components. J Cell Biol 95:487–500PubMedCrossRefGoogle Scholar
  64. Rozet JM, Gerber S, Souied E, Perrault I, Chatelin S, Ghazi I, Leowski C, Dufier JL, Munnich A, Kaplan J (1998) Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 6:291–295PubMedCrossRefGoogle Scholar
  65. Schmidt S, Postel EA, Agarwal A, Allen IC Jr, Walters SN, De la Paz MA, Scott WK, Haines JL, Pericak-Vance MA, Gilbert JR (2003) Detailed analysis of allelic variation in the ABCA4 gene in age-related maculopathy. Invest Ophthalmol Vis Sci 44:2868–2875PubMedCrossRefGoogle Scholar
  66. See RH, Caday-Malcolm RA, Singaraja RR, Zhou S, Silverston A, Huber MT, Moran J, James ER, Janoo R, Savill JM, Rigot V, Zhang LH, Wang M, Chimini G, Wellington CL, Tafuri SR, Hayden MR (2002) Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J Biol Chem 277:41835–41842PubMedCrossRefGoogle Scholar
  67. Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, Lupski JR (1999) The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res 39:2537–2544PubMedCrossRefGoogle Scholar
  68. Sparrow JR, Wu Y, Kim CY, Zhou J (2009) Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 51(2):247–261PubMedCrossRefGoogle Scholar
  69. Suarez T, Biswas SB, Biswas EE (2002) Biochemical defects in retina-specific human ATP binding cassette transporter nucleotide binding domain 1 mutants associated with macular degeneration. J Biol Chem 277:21759–21767PubMedCrossRefGoogle Scholar
  70. Sullivan JM (2009) Focus on molecules: ABCA4 (ABCR) – an import-directed photoreceptor retinoid flipase. Exp Eye Res 89:602–603PubMedCrossRefGoogle Scholar
  71. Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16PubMedCrossRefGoogle Scholar
  72. Sun H, Molday RS, Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274:8269–8281PubMedCrossRefGoogle Scholar
  73. Sun H, Smallwood PM, Nathans J (2000) Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet 26:242–246PubMedCrossRefGoogle Scholar
  74. Szuts EZ (1985) Light stimulates phosphorylation of two large membrane proteins in frog photoreceptors. Biochemistry 24:4176–4184PubMedCrossRefGoogle Scholar
  75. Tachikawa M, Watanabe M, Hori S, Fukaya M, Ohtsuki S, Asashima T, Terasaki T (2005) Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem 95:294–304PubMedCrossRefGoogle Scholar
  76. Trompier D, Alibert M, Davanture S, Hamon Y, Pierres M, Chimini G (2006) Transition from dimers to higher oligomeric forms occurs during the ATPase cycle of the ABCA1 transporter. J Biol Chem 281:20283–20290PubMedCrossRefGoogle Scholar
  77. van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FP (1998) ABCR unites what ophthalmologists divide(s). Ophthalmic Genet 19:117–122PubMedCrossRefGoogle Scholar
  78. Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3:281–290PubMedCrossRefGoogle Scholar
  79. Walia S, Fishman GA (2009) Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet 30:63–68PubMedCrossRefGoogle Scholar
  80. Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B, Li C, Feuerstein TJ, Gibbs J, Smith B, de Morais SM, Dower WJ, Koller KJ (2009) Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59:404–413PubMedCrossRefGoogle Scholar
  81. Weleber RG (1994) Stargardt’s macular dystrophy. Arch Ophthalmol 112:752–754PubMedCrossRefGoogle Scholar
  82. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23PubMedCrossRefGoogle Scholar
  83. Wiszniewski W, Zaremba CM, Yatsenko AN, Jamrich M, Wensel TG, Lewis RA, Lupski JR (2005) ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet 14:2769–2778PubMedCrossRefGoogle Scholar
  84. Zarubica A, Trompier D, Chimini G (2007) ABCA1, from pathology to membrane function. Pflugers Arch 453:569–579PubMedCrossRefGoogle Scholar
  85. Zhong M, Molday LL, Molday RS (2009) Role of the C terminus of the photoreceptor ABCA4 transporter in protein folding, function, and retinal degenerative diseases. J Biol Chem 284:3640–3649PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yaroslav Tsybovsky
    • 1
  • Robert S. Molday
  • Krzysztof Palczewski
  1. 1.Department of PharmacologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations