Audiovisual Temporal Integration for Complex Speech, Object-Action, Animal Call, and Musical Stimuli

  • Argiro VatakisEmail author
  • Charles Spence


Understanding the mechanisms underlying the human perception of synchrony for simple and complex audiovisual stimuli represents an important, but as yet unresolved, issue in the field of cognitive science. Many questions regarding the processes involved in the temporal integration of auditory and visual stimuli that give rise to a synchronous audiovisual experience of everyday events are still open for research. This chapter outlines what is currently known about the mechanisms of audiovisual temporal perception and reviews the results of a series of studies of temporal perception using complex audiovisual stimuli. To date, two characteristics of the audiovisual temporal window of integration have been shown to be relatively consistent across the majority of studies: (1) It has a width on the order of several hundred milliseconds and (2) it is asymmetrical, being larger when the visual-stimulus leads than when it lags. We provide an overview of research demonstrating that the temporal window of audiovisual integration for complex stimuli is modulated by the type, complexity, and properties of the particular experimental stimuli used, the familiarity of the observer with the stimuli presented, the degree of unity of the auditory- and visual-stimulus streams (for the case of speech stimuli), and the orientation of the visual stimulus (again for the case of speech stimuli).


Temporal Window Multisensory Integration Temporal Order Judgment Speech Stimulus Just Noticeable Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A.V. was supported by a Newton Abraham Studentship from the Medical Sciences Division, University of Oxford. Correspondence regarding this article should be addressed to Argiro Vatakis, Institute for Language and Speech Processing, Artemidos 6 & Epidavrou, Athens, 151 25, Greece. E-mail:


  1. Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262PubMedGoogle Scholar
  2. Allan LG (1975) The relationship between judgments of successiveness and judgments of order. Percept Psychophys 18:29–36CrossRefGoogle Scholar
  3. Arnold DH, Johnston A, Nishida S (2005) Timing sight and sound. Vision Research 45:1275–1284PubMedCrossRefGoogle Scholar
  4. Asakawa K, Tanaka A, Imai H (2009). Temporal recalibration in audio-visual speech integration using a simultaneity judgment task and the McGurk identification task. Cognitive Science Meeting, Amsterdam, NetherlandsGoogle Scholar
  5. Bald L, Berrien FK, Price JB, Sprague RO (1942) Errors in perceiving the temporal order of auditory and visual stimuli. J Appl Psychol 26:382–388CrossRefGoogle Scholar
  6. Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565PubMedCrossRefGoogle Scholar
  7. Bernstein LE, Auer ET, Moore JK (2004) Audiovisual speech binding: convergence or association? In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processing. MIT Press, Cambridge, MA, pp 203–223Google Scholar
  8. Bertelson P, Aschersleben G (1998) Automatic visual bias of perceived auditory location. Psychonom Bull Rev 5:482–489CrossRefGoogle Scholar
  9. Bushara KO, Grafman J, Hallett M (2001). Neural correlates of auditory-visual stimulus onset asynchrony detection. J Neurosci 21:300–304PubMedGoogle Scholar
  10. Calvert GA, Spence C, Stein BE (eds) (2004) The handbook of multisensory processing. MIT Press, Cambridge, MAGoogle Scholar
  11. Chen Y-C, Spence C (2010). When hearing the bark helps to identify the dog: Semantically-congruent sounds modulate the identification of masked pictures. Cognition 114:389–404Google Scholar
  12. Choe CS, Welch RB, Gilford RM, Juola JF (1975) The ‘ventriloquist effect’: visual dominance or response bias? Percept Psychophys 18:55–60CrossRefGoogle Scholar
  13. Conrey BL, Pisoni DB (2006) Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. J Acoust Soc Am 119:4065–4073PubMedCrossRefGoogle Scholar
  14. Coren S, Ward LM, Enns JT (2004) Sensation perception, 6th edn. Harcourt Brace, Fort WorthGoogle Scholar
  15. De Gelder B, Bertelson P (2003) Multisensory integration, perception and ecological validity. Trends Cogn Sci 7:460–467PubMedCrossRefGoogle Scholar
  16. Dixon NF, Spitz L (1980) The detection of auditory visual desynchrony. Perception 9: 719–721PubMedCrossRefGoogle Scholar
  17. Doehrmann O, Naumer MJ (2008) Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration. Brain Res 1242:136–150PubMedCrossRefGoogle Scholar
  18. Driver J, Spence C (2000) Multisensory perception: beyond modularity and convergence. Curr Biol 10:R731–R735PubMedCrossRefGoogle Scholar
  19. Efron R (1963) The effect of handedness on the perception of simultaneity and temporal order. Brain 86:261–284CrossRefGoogle Scholar
  20. Engel GR, Dougherty WG (1971) Visual-auditory distance constancy. Nature 234:308PubMedCrossRefGoogle Scholar
  21. Eskelund K, Andersen TS (2009) Specialization in audiovisual speech perception: a replication study. Poster presented at the 10th Annual Meeting of the International Multisensory Research Forum (IMRF), New York City, 29th June–2nd JulyGoogle Scholar
  22. Fendrich R, Corballis PM (2001) The temporal cross-capture of audition and vision. Percept Psychophys 63:719–725PubMedCrossRefGoogle Scholar
  23. Fraisse P (1984) Perception and estimation of time. Annu Rev Psychol 35:1–36PubMedCrossRefGoogle Scholar
  24. Fujisaki W, Nishida S (2005) Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals. Exp Brain Res 166:455–464PubMedCrossRefGoogle Scholar
  25. Fujisaki W, Nishida S (2007) Feature-based processing of audio-visual synchrony perception revealed by random pulse trains. Vis Res 47:1075–1093PubMedCrossRefGoogle Scholar
  26. Grant KW, Greenberg S (2001) Speech intelligibility derived from asynchronous processing of auditory-visual speech information. Proceedings of the Workshop on Audio Visual Speech Processing, Scheelsminde, Denmark, September 7–9, pp 132–137Google Scholar
  27. Grant KW, Seitz PF (1998) The use of visible speech cues (speechreading) for directing auditory attention: reducing temporal and spectral uncertainty in auditory detection of spoken sentences. In: Kuhl PK, Crum LA (eds) Proceedings of the 16th international congress on acoustics and the 135th meeting of the acoustical society of America, vol. 3. ASA, New York, pp 2335–2336Google Scholar
  28. Grant KW, van Wassenhove V, Poeppel D (2003) Detection of auditory (cross-spectral) and auditory-visual (cross-modal) synchrony. Speech Commun 44:43–53CrossRefGoogle Scholar
  29. Grant KW, van Wassenhove V, Poeppel D (2004) Detection of auditory (cross-spectral) and auditory-visual (cross-modal) synchrony. J Acoust Soc Am 108:1197–1208CrossRefGoogle Scholar
  30. Hein G, Doehrmann O, Müller NG, Kaiser J, Muckli L, Naumer MJ (2007) Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas. J Neurosci 27:7881–7887PubMedCrossRefGoogle Scholar
  31. Hirsh IJ (1959) Auditory perception of temporal order. J Acoust Soc Am 31:759–767CrossRefGoogle Scholar
  32. Hirsh IJ, Sherrick CE Jr (1961) Perceived order in different sense modalities. J Exp Psychol 62:424–432CrossRefGoogle Scholar
  33. Hollier MP, Rimell AN (1998) An experimental investigation into multi-modal synchronisation sensitivity for perceptual model development. 105th AES Convention, Preprint No. 4790Google Scholar
  34. Howard IP, Templeton WB (1966) Human spatial orientation. Wiley, New YorkGoogle Scholar
  35. Jaśkowski P, Jaroszyk F, Hojan-Jesierska D (1990) Temporal-order judgments and reaction time for stimuli of different modalities. Psycholog Res 52:35–38CrossRefGoogle Scholar
  36. Jones JA, Jarick M (2006) Multisensory integration of speech signals: the relationship between space and time. Exp Brain Res 174:588–594PubMedCrossRefGoogle Scholar
  37. Kallinen K, Ravaja N (2007) Comparing speakers versus headphones in listening to news from a computer - individual differences and psychophysiological responses. Comp Human Behav 23:303–317CrossRefGoogle Scholar
  38. Keetels M, Vroomen J (in press). Perception of synchrony between the senses. In: Murrary MM, Wallace MT (eds.) Frontiers in the neural basis of multisensory processesGoogle Scholar
  39. Kent RD (1997) The speech sciences. Singular, San Diego, CAGoogle Scholar
  40. King AJ (2005) Multisensory integration: strategies for synchronization. Curr Biol 15: R339–R341PubMedCrossRefGoogle Scholar
  41. King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60:492–500PubMedCrossRefGoogle Scholar
  42. Kohlrausch A, van de Par S (2005) Audio-visual interaction in the context of multi-media applications. In: Blauert J (ed.) Communication acoustics. Springer, Berlin, pp 109–138Google Scholar
  43. Kopinska A, Harris LR (2004) Simultaneity constancy. Perception 33:1049–1060PubMedCrossRefGoogle Scholar
  44. Koppen C, Spence C (2007). Audiovisual asynchrony modulates the Colavita visual dominance effect. Brain Res 1186:224–232PubMedCrossRefGoogle Scholar
  45. Lee H-L, Noppeney U (2009) Audiovisual synchrony detection for speech and music signals. Poster presented at the 10th annual meeting of the international multisensory research forum (IMRF), New York City, 29th June–2nd JulyGoogle Scholar
  46. Lewald J, Guski R (2004) Auditory-visual temporal integration as a function of distance: no compensation of sound-transmission time in human perception. Neurosci Lett 357: 119–122PubMedCrossRefGoogle Scholar
  47. Maier JX, Di Luca M, Ghazanfar AA (2009; submitted). Auditory-visual asynchrony detection in humans. J Exp Psychol: Human Percept PerformGoogle Scholar
  48. Massaro DW (1996) Integration of multiple sources of information in language processing. In: Inui T, McClelland JL (eds) Attention and performance XVI: information integration in perception and communication. MIT Press, New York, pp 397–432Google Scholar
  49. Massaro DW (2004) From multisensory integration to talking heads and language learning. In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processing. MIT Press, Cambridge, MA, pp 153–176Google Scholar
  50. Massaro DW, Cohen MM (1993) Perceiving asynchronous bimodal speech in consonant-vowel and vowel syllables. Speech Commun 13:127–134CrossRefGoogle Scholar
  51. Massaro DW, Cohen MM, Smeele PMT (1996) Perception of asynchronous and conflicting visual and auditory speech. J Acoust Soc Am 100:1777–1786PubMedCrossRefGoogle Scholar
  52. Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340PubMedCrossRefGoogle Scholar
  53. McGrath M, Summerfield Q (1985) Intermodal timing relations and audiovisual speech recognition by normal hearing adults. J Acoust Soc Am 77:678–685PubMedCrossRefGoogle Scholar
  54. McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748PubMedCrossRefGoogle Scholar
  55. Miner N, Caudell T (1998) Computational requirements and synchronization issues of virtual acoustic displays. Presence: Teleop Virt Environ 7:396–409CrossRefGoogle Scholar
  56. Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17:154–163CrossRefGoogle Scholar
  57. Munhall KG, Gribble P, Sacco L, Ward M (1996) Temporal constraints on the McGurk effect. Percept Psychophys 58:351–362PubMedCrossRefGoogle Scholar
  58. Munhall KG, Vatikiotis-Bateson E (2004) Spatial and temporal constraints on audiovisual speech perception. In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processing. MIT Press, Cambridge, MA, pp 177–188Google Scholar
  59. Navarra J, Alsius A, Velasco I, Soto-Faraco S, Spence C (2010) Perception of audiovisual speech synchrony for native and non-native speech. Brain Res 1323:84–93Google Scholar
  60. Navarra J, Hartcher-O’Brien J, Piazza E, Spence C (2009) Adaptation to audiovisual asynchrony modulates the speeded detection of sound. Proc Natl Acad Sci USA 106:9169–9173PubMedCrossRefGoogle Scholar
  61. Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cogn Brain Res 25:499–507CrossRefGoogle Scholar
  62. Neuta W, Feirtag M (1986) Fundamental neuroanatomy. Freeman Co, New YorkGoogle Scholar
  63. Noesselt T, Bergmann D, Heinze H-J., Münte T, Spence C (submitted) Spatial coding of multisensory temporal relations in human superior temporal sulcus. PLoS ONEGoogle Scholar
  64. Noesselt T, Fendrich R, Bonath B, Tyll S, Heinze H-J. (2005) Closer in time when farther in space - Spatial factors in audiovisual temporal integration. Cogn Brain Res 25:443–458CrossRefGoogle Scholar
  65. Pandey CP, Kunov H, Abel MS (1986) Disruptive effects of auditory signal delay on speech perception with lip-reading. J Audit Res 26:27–41Google Scholar
  66. Parise C, Spence C (2009) ‘When birds of a feather flock together’: synesthetic correspondences modulate audiovisual integration in non-synesthetes. PLoS ONE 4(5):e5664. doi:10.1371/journal.pone.0005664PubMedCrossRefGoogle Scholar
  67. Petrini K, Russell M, Pollick F (2009) When knowing can replace seeing in audiovisual integration of actions. Cognition 110:432–439PubMedCrossRefGoogle Scholar
  68. Pöppel E, Schill K, von Steinbüchel N (1990) Sensory integration within temporally neutral system states: a hypothesis. Naturwissenschaften 77:89–91PubMedCrossRefGoogle Scholar
  69. Recanzone GH (2003) Auditory influences on visual temporal rate perception. J Neurophysiol 89:1078–1093PubMedCrossRefGoogle Scholar
  70. Reeves B, Voelker D (1993) Effects of audio-video asynchrony on viewer’s memory, evaluation of content and detection ability. Research report prepared for Pixel Instruments. Los Gatos, CaliforniaGoogle Scholar
  71. Rihs S (1995) The influence of audio on perceived picture quality and subjective audio-visual delay tolerance. In: Hamberg R, de Ridder H (eds) Proceedings of the MOSAIC workshop: advanced methods for the evaluation of television picture quality, Eindhoven, September 18th–19th, pp 133–137Google Scholar
  72. Rutschmann J, Link R (1964) Perception of temporal order of stimuli differing in sense mode and simple reaction time. Percept Motor Skills 18:345–352PubMedCrossRefGoogle Scholar
  73. Scheier CR, Nijhawan R, Shimojo S (1999) Sound alters visual temporal resolution. Invest Opthalmol Vis Sci 40:S792Google Scholar
  74. Schutz M, Kubovy M (2009) Causality in audio-visual sensory integration. J Exp Psychol: Human Percept Perform 35:1791–1810Google Scholar
  75. Schwartz J-L, Robert-Ribes J, Escudier P (1998) Ten years after Summerfield: a taxonomy of models for audio-visual fusion in speech perception. In: Burnham D (ed.) Hearing by eye II: advances in the psychology of speechreading and auditory-visual speech. Psychology Press, Hove, UK, pp 85–108Google Scholar
  76. Sekuler R, Sekuler AB, Lau R (1997) Sound alters visual motion perception. Nature 385:308PubMedCrossRefGoogle Scholar
  77. Slutsky DA, Recanzone GH (2001) Temporal and spatial dependency of the ventriloquism effect. Neuroreport 12:7–10PubMedCrossRefGoogle Scholar
  78. Soto-Faraco S, Alsius A (2007) Access to the uni-sensory components in a cross-modal illusion. Neuroreport 18:347–350PubMedCrossRefGoogle Scholar
  79. Soto-Faraco S, Alsius A (2009) Deconstructing the McGurk-MacDonald illusion. J Exp Psychol: Human Percept Perform 35:580–587CrossRefGoogle Scholar
  80. Soto-Faraco S, Lyons J, Gazzaniga M, Spence C, Kingstone A (2002) The ventriloquist in motion: illusory capture of dynamic information across sensory modalities. Cogn Brain Res 14:139–146CrossRefGoogle Scholar
  81. Spence C (2007) Audiovisual multisensory integration. J Acoust Soc Jpn: Acoust Sci Technol 28:61–70CrossRefGoogle Scholar
  82. Spence C. Prior entry: attention and temporal perception. In: Nobre AC, Coull JT (eds) Attention and time. Oxford University Press, Oxford (in press)Google Scholar
  83. Spence C, Driver J (1997) On measuring selective attention to a specific sensory modality. Percept Psychophys 59:389–403PubMedCrossRefGoogle Scholar
  84. Spence C, Shore DI, Klein RM (2001) Multisensory prior entry. J Exp Psychol: Gen 130:799–832CrossRefGoogle Scholar
  85. Spence C, Squire SB (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:R519–R521PubMedCrossRefGoogle Scholar
  86. Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge, MAGoogle Scholar
  87. Steinmetz R (1996) Human perception of jitter and media synchronization. IEEE J Select Areas Commun 14:61–72CrossRefGoogle Scholar
  88. Sternberg S, Knoll RL, Gates BA (1971) Prior entry reexamined: Effect of attentional bias on order perception. Paper presented at the meeting of the Psychonomic Society, St. Louis, MissouriGoogle Scholar
  89. Stone JV, Hunkin NM, Porrill J, Wood R, Keeler V, Beanland M, Port M, Porter NR (2001) When is now? Perception of simultaneity. Proc R Soc Lond B, Biol Sci 268:31–38CrossRefGoogle Scholar
  90. Sugita Y, Suzuki Y (2003) Implicit estimation of sound-arrival time. Nature 421:911PubMedCrossRefGoogle Scholar
  91. Teder-Sälejärvi WA, Di Russo F, McDonald JJ, Hillyard SA (2005) Effects of spatial congruity on audio-visual multimodal integration. J Cogn Neurosci 17:1396–1409PubMedCrossRefGoogle Scholar
  92. Thorne JD, Debner S (2008) Irrelevant visual stimuli improve auditory task performance. Neuroreport 19:553–557PubMedCrossRefGoogle Scholar
  93. Titchener- EB (1908) Lecture on the elementary psychology of feeling and attention. Macmillan, New YorkCrossRefGoogle Scholar
  94. Traunmüller H, Öhrström N (2007) Audiovisual perception of openness and lip rounding in front vowels. J Phonet 35:244–258CrossRefGoogle Scholar
  95. Tuomainen J, Andersen TS, Tiippana K, Sams M (2005) Audio-visual speech is special. Cognition 96:B13–B22PubMedCrossRefGoogle Scholar
  96. van de Par S, Kohlrausch A, Juola JF (1999) Judged synchrony/asynchrony for light-tone pairs. Poster presented at the 40th Annual Meeting of the Psychonomic Society, Los Angeles, CAGoogle Scholar
  97. van Eijk RL J., Kohlrausch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968PubMedCrossRefGoogle Scholar
  98. van Wassenhove V., Grant KW., Poeppel D (2003) Electrophysiology of auditory-visual speech integration. International conference on auditory-visual speech processing (AVSP), St Jorioz, France, pp 31–35Google Scholar
  99. van Wassenhove V, Grant KW, Poeppel D (2005) Visual speech speeds up the neural processing of auditory speech. Proc Natl Acad Sci USA 102:1181–1186PubMedCrossRefGoogle Scholar
  100. van Wassenhove V, Grant KW, Poeppel D (2007) Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45:598–607PubMedCrossRefGoogle Scholar
  101. Vatakis A, Ghazanfar AA, Spence C (2008) Facilitation of multisensory integration by the “unity effect” reveals that speech is special. J Vis 8(9):14:1–11PubMedCrossRefGoogle Scholar
  102. Vatakis A, Navarra J, Soto-Faraco S, Spence C (2007) Temporal recalibration during asynchronous audiovisual speech perception. Exp Brain Res 181:173–181PubMedCrossRefGoogle Scholar
  103. Vatakis A, Spence C (2006a) Audiovisual synchrony perception for music, speech, and object actions. Brain Res 1111:134–142PubMedCrossRefGoogle Scholar
  104. Vatakis A, Spence C (2006b) Evaluating the influence of frame rate on the temporal aspects of audiovisual speech perception. Neurosci Lett 405:132–136PubMedCrossRefGoogle Scholar
  105. Vatakis A, Spence C (2006c) Audiovisual synchrony perception for speech and music using a temporal order judgment task. Neurosci Lett 393:40–44PubMedCrossRefGoogle Scholar
  106. Vatakis A, Spence C (2007a) How ‘special’ is the human face? Evidence from an audiovisual temporal order judgment task. Neuroreport 18:1807–1811PubMedCrossRefGoogle Scholar
  107. Vatakis A, Spence C (2007b) Crossmodal binding: evaluating the ‘unity assumption’ using complex audiovisual stimuli. Proceedings of the 19th international congress on acoustics (ICA), Madrid, SpainGoogle Scholar
  108. Vatakis A, Spence C (2007c) Crossmodal binding: evaluating the ‘unity assumption’ using audiovisual speech stimuli. Percept Psychophys 69:744–756PubMedCrossRefGoogle Scholar
  109. Vatakis A, Spence C (2007d) Investigating the factors that influence the temporal perception of complex audiovisual events. Proc Eur Cogn Sci 2007 (EuroCogSci07):389–394Google Scholar
  110. Vatakis A, Spence C (2007e) An assessment of the effect of physical differences in the articulation of consonants and vowels on audiovisual temporal perception. Poster presented at the one-day meeting for young speech researchers, University College London, London, UKGoogle Scholar
  111. Vatakis A, Spence C (2008a). Investigating the effects of inversion on configural processing using an audiovisual temporal order judgment task. Perception 37:143–160PubMedCrossRefGoogle Scholar
  112. Vatakis A, Spence C (2008b). Evaluating the influence of the ‘unity assumption’ on the temporal perception of realistic audiovisual stimuli. Acta Psychol 127:12–23CrossRefGoogle Scholar
  113. Vatakis A, Spence C (submitted). Assessing the effect of physical differences in the articulation of consonants and vowels on audiovisual temporal perception. J Speech Lang Hear ResGoogle Scholar
  114. Vroomen J, de Gelder B (2004) Temporal ventriloquism: sound modulates the flash-lag effect. J Exp Psychol: Human Percept Perform 30:513–518CrossRefGoogle Scholar
  115. Vroomen J, Keetels M (2006) The spatial constraint in intersensory pairing: no role in temporal ventriloquism. J Exp Psychol: Human Percept Perform 32:1063–1071CrossRefGoogle Scholar
  116. Wada Y, Kitagawa N, Noguchi K (2003) Audio-visual integration in temporal perception. Int J Psychophysiol 50:117–124PubMedCrossRefGoogle Scholar
  117. Welch RB, Warren DH (1980) Immediate perceptual response to intersensory discrepancy. Psychol Bull 88:638–667PubMedCrossRefGoogle Scholar
  118. Zampini M, Bird KJ, Bentley DE, Watson A, Barrett G, Jones AK, Spence C (2007) Prior entry for pain and vision: attention speeds the perceptual processing of painful stimuli. Neurosci Lett 414:75–79PubMedCrossRefGoogle Scholar
  119. Zampini M, Guest S, Shore DI, Spence C (2005) Audio-visual simultaneity judgments. Percept Psychophys 67:531–544PubMedCrossRefGoogle Scholar
  120. Zampini M, Shore DI, Spence C (2003a) Multisensory temporal order judgments: the role of hemispheric redundancy. Int J Psychophysiol 50:165–180PubMedCrossRefGoogle Scholar
  121. Zampini M, Shore DI, Spence C (2003b) Audiovisual temporal order judgments. Exp Brain Res 152:198–210PubMedCrossRefGoogle Scholar
  122. Zeki E (1993) A vision of the brain. New York: Oxford University PressGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Language and Speech ProcessingResearch Centers “Athena”AthensGreece
  2. 2.Crossmodal Research Laboratory, Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations