Theory and Experiment in Electrocatalysis pp 89-132

Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50) | Cite as

Computational Simulations on the Oxygen Reduction Reaction in Electrochemical Systems

  • John A. Keith
  • Timo Jacob
Chapter

Abstract

The oxygen reduction reaction (ORR) is a canonical chemical reaction due to its ubiquitous presence in combustion, corrosion, energy storage, as well as energy conversion processes. This chapter focuses on the ORR in the context of energy conversion, specifically in polymer-electrolyte membrane fuel cells or protonexchange membrane fuel cells (both conventionally abbreviated as PEMFCs). PEMFCs produce electricity through an electrocatalytic process whereby hydrogen and oxygen gases are fuels. Hydrogen intake is oxidized at the anode, and the resulting protons permeate through the polymer electrolyte membrane. Resulting electrons generate electrical current for the cell. Once protons have passed through the electrolyte, they combine with molecular oxygen and the electrons at the cathode. The ensuing ORR reaction is the key that enables PEMFCs to generate one of the ‘greenest’ of waste products possible: water.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Gatrell and B. MacDougall In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 2.Google Scholar
  2. 2.
    R. N. Ross Jr. In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 2.Google Scholar
  3. 3.
    N. A. Anastasijevic, S. Strbac and R. R. Adzic, J. Electroanal. Chem. 240 (1988) 239.Google Scholar
  4. 4.
    N. M. Marković, H. A. Geistager and P. N. Ross, J. Phys. Chem. 99 (1995) 3411.Google Scholar
  5. 5.
    N. M. Marković, R. R. Adzic, B. D. Cahan and E. Yeager, J. Electroanal. Chem. 377 (1994) 249.Google Scholar
  6. 6.
    R. R. Adzic In Electrocatalysis; J. Lipkowski, P. N. Ross, Eds.; Wiley-VCH: New York, 1998, p. 197.Google Scholar
  7. 7.
    N. M. Marković, R. R. Adzic, B. D. Cahan and E. Yeager, ISE Proceedings (1991) 138.Google Scholar
  8. 8.
    N. M. Marković, H. A. Gasteiger and P. N. Ross, J. Electrochem. Soc. 144 (1997) 1591.Google Scholar
  9. 9.
    N. M. Marković, H. A. Gasteiger, B. N. Grgur and P. N. Ross, J. Electroanal. Chem. 467 (1999) 157.Google Scholar
  10. 10.
    T. Tada In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 3.Google Scholar
  11. 11.
    S. Kim and S. J. Park, Electrochim. Acta 52 (2007) 3013.Google Scholar
  12. 12.
    E. Auer, A. Freund, J. Pietsch and T. Tacke, Appl. Catal. A: Gen. 173 (1998) 259.Google Scholar
  13. 13.
    G. Wang, G. Sun, Z. Zhou, J. Liu, Q. Wang, S. Wang, J. Guo, S. Yang, Q. Xin and B. Yi, Electrochem. Solid State Lett. 8 (2005) A12.Google Scholar
  14. 14.
    A. Kongkanand, S. Kuwabata, G. Girishkumar and P. Kamat, Langmuir 22 (2006) 2392.Google Scholar
  15. 15.
    C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon and Y. S. Yan, Nano Lett. 4 (2004) 345.Google Scholar
  16. 16.
    J.-S. Zheng, X.-S. Zhang, P. Li, X.-G. Zhoua, D. Chenb, Y. Liuc and W.-K. Yuan, Electrochim. Acta 53 (2008) 3587.Google Scholar
  17. 17.
    J. S. Spendelow and A. Wieckowski, Phys. Chem. Chem. Phys. 9 (2007) 2654.Google Scholar
  18. 18.
    T. Toda, H. Igarashi, H. Uchida and M. Watanabe, J. Electrochem. Soc. 146 (1999) 3750.Google Scholar
  19. 19.
    L. Xiong, A. M. Kannan and A. Manthiram, Electrochem. Commun. 4 (2002) 898.Google Scholar
  20. 20.
    J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki and R. R. Adzic, J. Phys. Chem. B 108 (2004) 10955.Google Scholar
  21. 21.
    R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio and F. Uribe, Top. Catal. 46 (2007) 249.Google Scholar
  22. 22.
    J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson and R. R. Adzic, J. Phys. Chem. B 109 (2005) 22701.Google Scholar
  23. 23.
    J. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis and R. R. Adzic, J. Am. Chem. Soc. 127 (2005) 12480.Google Scholar
  24. 24.
    N. M. Marković, T. J. Schmidt, V. Stamenković and P. N. Ross, Fuel Cells 1 (2001) 105.Google Scholar
  25. 25.
    D. Thompsett In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 3.Google Scholar
  26. 26.
    S. Mukerjee, S. Srinivasan and M. P. Soriaga, J. Electrochem. Soc. 142 (1995) 1409.Google Scholar
  27. 27.
    U. A. Paulus, A. Wokaun, G. G. Scherrer, T. J. Schmidt, V. Stamenković, N. M. Marković and P. N. Ross, Electrochim. Acta 47 (2002) 3787.Google Scholar
  28. 28.
    V. Stamenković, T. J. Schmidt, P. N. Ross and N. M. Marković, J. Phys. Chem. B 106 (2002) 11970.Google Scholar
  29. 29.
    J. L. Fernández, D. A. Walsh and A. J. Bard, J. Am. Chem. Soc. 127 (2005) 357.Google Scholar
  30. 30.
    N. M. Marković and P. N. Ross, Surf. Sci. Rep. 45 (2002) 117.Google Scholar
  31. 31.
    T. J. Schmidt, V. Stamenković, M. Arenz, N. M. Marković and P. N. Ross, Electrochim. Acta 47 (2002) 3765.Google Scholar
  32. 32.
    H. Ye, J. A. Crooks and R. M. Crooks, Langmuir 23 (2007) 11901.Google Scholar
  33. 33.
    J. Zhang, M. B. Vukmirovic, K. Sasaki, F. Uribe and R. R. Adzic, J. Serb. Chem. Soc. 70 (2005) 513.Google Scholar
  34. 34.
    J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis and R. R. Adzic, Angew. Chem. Int. Ed. 44 (2005) 2132.Google Scholar
  35. 35.
    R. R. Adzic and F. H. B. Lima In Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability; W. Vielstich, H. A. Gasteiger, H. Yokokawa, Eds.; Wiley-VCH: Weinheim, 2009; Vol. 5.Google Scholar
  36. 36.
    V. Stamenković, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas and N. M. Marković, Science 315 (2007) 493.Google Scholar
  37. 37.
    V. R. Stamenković and N. M. Marković In Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability; W. Vielstich, H. A. Gasteiger, H. Yokokawa, Eds.; Wiley-VCH: Weinheim, 2009; Vol. 5.Google Scholar
  38. 38.
    P. Holt-Hindle, Q. Yi, G. Wu, K. Koczkur and A. Chen, J. Electrochem. Soc. 155 (2008) K5.Google Scholar
  39. 39.
    M. B. Vukmirovic, P. Liu, J. T. Muckerman and R. R. Adzic, J. Phys. Chem. C 111 (2007) 15306.Google Scholar
  40. 40.
    M. A. García-Contreras, S. M. Fernández-Valverde and J. R. Vargas-García, J. Alloys and Compounds 434 (2007) 522.Google Scholar
  41. 41.
    W. E. Mustain and J. Prakash, J. Power Sources 170 (2007) 28.Google Scholar
  42. 42.
    O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya and K.-I. Ota, Electrochem. Commun. 6 (2004) 105.Google Scholar
  43. 43.
    M. Shao, P. Liu, J. Zhang and R. R. Adzic, J. Phys. Chem. B 111 (2007) 6772.Google Scholar
  44. 44.
    C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. B. Marques, H. Wang and J. Zhang, J. Power Sources 173 (2007) 891.Google Scholar
  45. 45.
    A. Lewera, J. Inukai, W. P. Zhoua, D. Caoa, H. T. Duonga, N. Alonso-Vante and A. Wieckowski, Electrochim. Acta 52 (2007) 5759.Google Scholar
  46. 46.
    N. Alonso-Vante In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 2.Google Scholar
  47. 47.
    R. Zeis, T. Lei, K. Sieradzki, J. Snyder and J. Erlebacher, J. Catal. 253 (2008) 132.Google Scholar
  48. 48.
    A. Garsuch, R. d’Eon, T. Dahn, O. Klepel, R. R. Garsuch and J. R. Dahn, J. Electrochem. Soc. 155 (2008) B236.Google Scholar
  49. 49.
    R. Yang, K. Stevens and J. R. Dahn, J. Electrochem. Soc. 155 (2008) B79.Google Scholar
  50. 50.
    A. Bonakdarpour, K. Lake, K. Stevens and J. R. Dahn, J. Electrochem. Soc. 155 (2008) B108.Google Scholar
  51. 51.
    Y. Shen, M. Träuble and G. Wittstock, Anal. Chem. 80 (2008) 750.Google Scholar
  52. 52.
    C. Sanchez and E. Leiva In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 2.Google Scholar
  53. 53.
    R. R. Adzic In Advances in Electrochemistry and Electrochemical Engineering; H. Gerischer, C. Tobias, Eds.; Wiley: New York, 1984; Vol. 13, p. 159.Google Scholar
  54. 54.
    R. R. Adzic In Encyclopedia of Electrochemistry; A. J. Bard, M. Stratmann, E. Gileadi, M. Urbakh, Eds.; Wiley-VCH: Weinheim, 2002; Vol. 1, p. 561.Google Scholar
  55. 55.
    T. Abe, G. M. Swain, K. Sashikata and K. Itaya, J. Electroanal. Chem. 382 (1995) 73.Google Scholar
  56. 56.
    A. Kongkanand and S. Kuwabata, Electrochem. Commun. 5 (2003) 133.Google Scholar
  57. 57.
    H. Yang, W. Vogel, C. Lamy and N. Alonso-Vante, J. Phys. Chem. B 108 (2004) 11024.Google Scholar
  58. 58.
    L. G. R. A. Santos, C. H. F. Oliveira, I. R. Moraes and E. A. Ticianelli, J. Electroanal. Chem. 596 (2006) 141.Google Scholar
  59. 59.
    F. H. B. Lima, M. L. Calegaro and E. A. Ticianelli, Russ. J. Electrochem. 42 (2006) 1283.Google Scholar
  60. 60.
    F. H. B. Lima, M. J. Giz and E. A. Ticianelli, J. Braz. Chem. Soc. 16 (2005) 328.Google Scholar
  61. 61.
    F. H. B. Lima, C. D. Sanches and E. A. Ticianelli, J. Electrochem. Soc. 152 (2005) A1466.Google Scholar
  62. 62.
    F. H. B. Lima, J. Zhang, M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli and R. R. Adzic, J. Solid State Electrochem. 12 (2008) 399.Google Scholar
  63. 63.
    J. B. Goodenough In Handbook of Fuel Cells: Fundamentals, Technology, Applications; W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 2.Google Scholar
  64. 64.
    P. Strasser In Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability; W. Vielstich, H. A. Gasteiger, H. Yokokawa, Eds.; Wiley-VCH: Weinheim, 2009; Vol. 5.Google Scholar
  65. 65.
    H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal. B: Environ. 56 (2005) 9.Google Scholar
  66. 66.
    F. Jaouen and J. P. Dodelet, Electrochim. Acta 52 (2007) 5975.Google Scholar
  67. 67.
    C. Hartnig, P. Vassilev and M. T. M. Koper, Electrochim. Acta 48 (2003) 3751.Google Scholar
  68. 68.
    Z. Shi, J. Zhang, Z.-S. Liu, H. Wang and D. P. Wilkinson, Electrochim. Acta 51 (2006) 1905.Google Scholar
  69. 69.
    D. S. Sholl In Chemical Modelling: Applications and Theory; A. Hinchliffe, Ed.; RSC Publishing Co.: Cambridge, 2006; Vol. 4, p. 108.Google Scholar
  70. 70.
    J. S. Griffith, Proc. Roy. Soc. London, Ser. A 235 (1956) 23.Google Scholar
  71. 71.
    L. Pauling, Nature 203 (1964) 182.Google Scholar
  72. 72.
    E. Yeager, J. Electrochem. Soc. 128 (1981) 160.Google Scholar
  73. 73.
    B. Hammer and J. K. Nørskov, Surf. Sci. 343 (1995) 211.Google Scholar
  74. 74.
    Y. Xu, A. V. Ruban and M. Mavrikakis, J. Am. Chem. Soc. 126 (2004) 4717.Google Scholar
  75. 75.
    A. B. Anderson and T. V. Albu, J. Am. Chem. Soc. 121 (1999) 11855.Google Scholar
  76. 76.
    J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B 108 (2004) 17886.Google Scholar
  77. 77.
    G. S. Karlberg, J. Rossmeisl and J. K. Nørskov, Phys. Chem. Chem. Phys. 9 (2007) 5158.Google Scholar
  78. 78.
    J. Greeley, J. Rossmeisl, A. Hellman and J. K. Nørskov, Z. Phys. Chem. 221 (2007) 1209.Google Scholar
  79. 79.
    R. R. Adzic and N. M. Marković, J. Electroanal. Chem. 138 (1982) 443.Google Scholar
  80. 80.
    R. A. Sidik, A. B. Anderson, N. P. Subramanian, S. P. Kumaraguru and B. N. Popov, J. Phys. Chem. B 110 (2006) 1787.Google Scholar
  81. 81.
    M. H. Shao, P. Liu and R. R. Adzic, J. Am. Chem. Soc. 128 (2006) 7408.Google Scholar
  82. 82.
    T. Zhang and A. B. Anderson, Electrochim. Acta 53 (2007) 982.Google Scholar
  83. 83.
    C. D. Taylor and M. Neurock, Current Opinion in Solid State and Materials Science 9 (2005) 49.Google Scholar
  84. 84.
    J. S. Filhol and M. M. Neurock, Angew. Chem. Int. Ed. 45 (2006) 402.Google Scholar
  85. 85.
    C. Hartnig and M. T. M. Koper, J. Electroanal. Chem. 532 (2002) 165.Google Scholar
  86. 86.
    Y. Wang and P. B. Balbuena, J. Phys. Chem. B 109 (2005) 14896.Google Scholar
  87. 87.
    Y. Wang and P. B. Balbuena, J. Chem. Theory Comput. 1 (2005) 935.Google Scholar
  88. 88.
    M. P. Hyman and J. W. Medlin, J. Phys. Chem. B 110 (2006) 15338.Google Scholar
  89. 89.
    P. Vassilev and M. T. M. Koper, J. Phys. Chem. C 111 (2007) 2607.Google Scholar
  90. 90.
    A. U. Nilekar, Y. Xu, J. Zhang, M. B. Vukmirovic, K. Sasaki, R. R. Adzic and M. Mavrikakis, Top. Catal. 46 (2007) 276.Google Scholar
  91. 91.
    F. H. B. Lima, J. Zhang, M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli and R. R. Adzic, J. Phys. Chem. C 111 (2007) 404.Google Scholar
  92. 92.
    V. Stamenković, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Marković, J. Rossmeisl, J. Greeley and J. K. Nørskov, Angew. Chem. Int. Ed. 45 (2006) 2897.Google Scholar
  93. 93.
    J. Roques and A. B. Anderson, J. Electrochem. Soc. 151 (2004) E85.Google Scholar
  94. 94.
    Y. Ma and P. B. Balbuena, Surf. Sci. 602 (2008) 107.Google Scholar
  95. 95.
    Handbook of Fuel Cells - Fundamentals, Technology and Applications; John Wiley & Sons, Inc.: New York, 2003.Google Scholar
  96. 96.
    K. S. An, A. Kimura, K. Ono, N. Kamakura, A. Kakizaki, C. Y. Park and K. Tanaka, Surf. Sci. 401 (1998) 336.Google Scholar
  97. 97.
    H. R. Colón-Mercado, H. Kim and B. N. Popov, Electrochem. Commun. 6 (2004) 795.Google Scholar
  98. 98.
    H. R. Colón-Mercado and B. N. Popov, J. Power Sources 155 (2006) 253.Google Scholar
  99. 99.
    H. A. Gasteiger and J. Garche In Handbook of Heterogeneous Catalysis; 2nd ed.; G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Eds.; Wiley-VCH Verlag GmbH: 2008; Vol. 8, p. 3081.Google Scholar
  100. 100.
    C. A. Menning and J. G. Chen, J. Chem. Phys. 128 (2008) 164703.Google Scholar
  101. 101.
    P. Yu, M. Pemberton and P. Plasse, J. Power Sources 144 (2005) 11.Google Scholar
  102. 102.
    C. A. Menning, H. H. Hwu and J. G. Chen, J. Phys. Chem. B 110 (2006) 15471.Google Scholar
  103. 103.
    S. R. Calvo and P. B. Balbuena, Surf. Sci. 601 (2007) 165.Google Scholar
  104. 104.
    M. H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. B. Vukmirovic and R. R. Adzic, Langmuir 22 (2006) 10409.Google Scholar
  105. 105.
    J. L. Fernández, J. M. White, Y. Sun, W. Tang, G. Henkelman and A. J. Bard, Langmuir 22 (2006) 10426.Google Scholar
  106. 106.
    Y. Suo, L. Zhuang and J. Lu, Angew. Chem. Int. Ed. 46 (2007) 2862.Google Scholar
  107. 107.
    Y. Wang and P. B. Balbuena, J. Phys. Chem. B 109 (2005) 18902.Google Scholar
  108. 108.
    Y. Ma and P. B. Balbuena, Chem. Phys. Lett. 440 (2007) 130.Google Scholar
  109. 109.
    Jaguar 4.2/5.0; Schrödinger Inc.: Portland, Oregon, 2000/2002.Google Scholar
  110. 110.
    A. D. Becke, J. Chem. Phys. 98(7) (1993) 5648.Google Scholar
  111. 111.
    C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37 (1988) 785.Google Scholar
  112. 112.
    P. J. Hay and W. R. Wadt, J. Phys. Chem. 82 (1985) 299.Google Scholar
  113. 113.
    T. Jacob, R. P. Muller and W. A. Goddard III., J. Phys. Chem. B 107(35) (2003) 9465.Google Scholar
  114. 114.
    T. Jacob and W. A. Goddard III., J. Phys. Chem. B 109 (2005) 297.Google Scholar
  115. 115.
    P. A. Schultz A description of the method is P. J. Feibelman, 35, (1987) 2626.Google Scholar
  116. 116.
    C. Verdozzi, P. A. Schultz, R. Wu, A. H. Edwards and N. Kioussis, Phys. Rev. B 66 (2002) 125408.Google Scholar
  117. 117.
    J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 88 (1996) 3865.Google Scholar
  118. 118.
    D. R. Hamann, Phys. Rev. B 40 (1989) 2980.Google Scholar
  119. 119.
    S. G. Louie, S. Froyen and M. L. Cohen, Phys. Rev. B 26 (1982) 1738.Google Scholar
  120. 120.
    M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter 14 (2002) 2717.Google Scholar
  121. 121.
    T. Jacob, J. Electroanal. Chem. 607 (2007) 158.Google Scholar
  122. 122.
    T. Jacob and M. Scheffler, Phys. Rev. B, in preparation.Google Scholar
  123. 123.
    H. Angerstein-Kozlowska, B. E. Conway and W. B. A. Sharp, J. Electroanal. Chem. 43(1) (1973) 9.Google Scholar
  124. 124.
    T. Dickinson, A. F. Povey and S. P. M. A., J. Chem. Soc. Faraday Trans. I 71(2) (1975) 298.Google Scholar
  125. 125.
    G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga and Y. S. Park, Electrochim. Acta 49 (2004) 1451.Google Scholar
  126. 126.
    G. C. Allen, P. M. Tucker, A. Capon and R. Parsons, J. Electroanal. Chem. 50 (1974) 335.Google Scholar
  127. 127.
    D. Gilroy and B. E. Conway, Can. J. Chem. 46 (1968) 875.Google Scholar
  128. 128.
    S. D. James, J. Electrochem. Soc. 116 (1969) 1681.Google Scholar
  129. 129.
    K. S. Kim, N. Winograd and R. E. Davis, J. Am. Chem. Soc. 93 (1971) 6296.Google Scholar
  130. 130.
    J. Clavilier, J. M. Orts, R. Gómez, J. M. Feliu and A. Aldaz, J. Electroanal. Chem. 404(2) (1996) 281.Google Scholar
  131. 131.
    H. You, D. J. Zurawski, Z. Nagy and R. M. Yonco, J. Chem. Phys. 100 (1994) 4699.Google Scholar
  132. 132.
    H. Gerischer and C. Tobias Advances in Electrochemistry and Electrochemical Engineering; Wiley: New York, 1984.Google Scholar
  133. 133.
    T. Jacob, Fuel Cells 6 (2006) 159.Google Scholar
  134. 134.
    T. Jacob and W. A. Goddard III., Chem. Phys. Chem. 7 (2006) 992.Google Scholar
  135. 135.
    Ş. C. Bădescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedürftig and G. Ertl, Phys. Rev. Lett. 88 (1996) 136101.Google Scholar
  136. 136.
    T. Jacob and W. A. Goddard III., J. Am. Chem. Soc. 126 (2004) 9360.Google Scholar
  137. 137.
    R. Eichler, F. Mittendorfer and J. Hafner, Phys. Rev. B 62 (2000) 4744.Google Scholar
  138. 138.
    B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Mersson and B. I. Lundquist, Phys. Rev. Lett. 78 (1997) 4410.Google Scholar
  139. 139.
    W. Ho, Science 279 (1998) 1907.Google Scholar
  140. 140.
    W. Ho, Acc. Chem. Res. 31 (1998) 567.Google Scholar
  141. 141.
    D. H. Parker, M. E. Bartram and B. E. Koel, Surf. Sci. 217 (1989) 489.Google Scholar
  142. 142.
    P. A. Thiel and T. E. Madey, Surf. Sci. Rep. 7 (1987) 211.Google Scholar
  143. 143.
    K. C. Neyerlin, W. Gu, J. Jorne and H. A. Gasteiger, J. Electrochem. Soc. 153 (2006) A1955.Google Scholar
  144. 144.
    R. A. Olsen, G. J. Kroes and E. J. Baerends, J. Chem. Phys. 111 (1999) 11155.Google Scholar
  145. 145.
    S. Meng, L. F. Xu, E. G. Wang and S. Gao, Phys. Rev. Lett. 89 (2002) 176104.Google Scholar
  146. 146.
    O. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersn and A. Nilsson, Phys. Rev. Lett. 89 (2002) 276102.Google Scholar
  147. 147.
    B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. M. Qian, C. Y. Ng, J. B. Liu, W. W. Chen and D. W. Schwenke, J. Phys. Chem. A 106 (2002) 2727.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • John A. Keith
    • 1
  • Timo Jacob
    • 1
  1. 1.Institute of ElectrochemistryUniversity of UlmUlmGermany

Personalised recommendations