Advertisement

Metacognition: A Closed-Loop Model of Biased Competition–Evidence from Neuroscience, Cognition, and Instructional Research

  • Neil H. SchwartzEmail author
  • Brianna M. Scott
  • Doris Holzberger
Chapter
Part of the Springer International Handbooks of Education book series (SIHE, volume 28)

Abstract

In this chapter, we take the position that self-regulation and metacognition reveal an undeniable conceptual core that assumes individuals make efforts to monitor their thoughts and actions, and try to gain some control over them. In the neurosciences, the higher-order processes of monitoring and control are referred to as “executive control processes”—processes that should be evident as neurological activity within known neuroanatomical locations. From this vantage point, we closely examine two predominant cognitive models of working memory—Cowan’s embedded processing model and Baddeley’s model containing a central executive component. We conclude that the former is the best fit with research from neuroscience and explains most efficiently the findings of metacognition in instruction. Thus, we offer a model of monitoring and control as a reciprocal function of the same neurologic processes that excite and inhibit, in a recursive fashion, the regions of the brain responsible for two types of activities involved in learning—the activities involved in processing the information itself relative to the goals of a task and the activities involved in processing (evaluating and correcting) the original activities deployed to seek goal attainment, activities that are metacognitive.

Keywords

Prefrontal Cortex Executive Control Active Cognition Central Executive Central Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen, R., Baddeley, A., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology. General, 135(2), 298–313.CrossRefGoogle Scholar
  2. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 89–195). New York: Academic.Google Scholar
  3. Azevedo, R. (2002). Beyond intelligent tutoring systems: Using computers as METAcognitive tools to enhance learning? Instructional Science, 30, 31–45.CrossRefGoogle Scholar
  4. Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40(4), 199–209.CrossRefGoogle Scholar
  5. Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate Students’ learning with hypermedia? Journal of Educational Psychology, 93(3), 523–535.CrossRefGoogle Scholar
  6. Azevedo, R., Cromley, J. G., & Seibert, D. (2004). Does adaptive scaffolding facilitate students’ ability to regulate their learning with hypermedia? Contemporary Educational Psychology, 29, 344–370.CrossRefGoogle Scholar
  7. Azevedo, R., Guthrie, J. T., & Seibert, D. (2004). The role of self-regulated learning in fostering students’ conceptual understanding of complex systems with hypermedia. Journal of Educational Computing Research, 30, 87–111.CrossRefGoogle Scholar
  8. Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition—Implications for the design of computer-based scaffolds. Instructional Science, 33, 367–379.CrossRefGoogle Scholar
  9. Azevedo, R., & Jacobson, M. J. (2008). Advances in scaffolding learning with hypertext and hypermedia: A summary and critical analysis. Educational Technology Research and Development, 56, 93–100.CrossRefGoogle Scholar
  10. Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Science, 4, 417–423.CrossRefGoogle Scholar
  11. Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189–208.CrossRefGoogle Scholar
  12. Baddeley, A. D., & Hitch, G. J. (2000). Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch models be merged? Journal of Experimental Child Psychology, 77(2), 128–137.CrossRefGoogle Scholar
  13. Baddeley, A., Allen, R. J., & Hitch, G. J. (2010). Investigating the episodic buffer. Psychologica Belgica, 50(3–4), 223–243.Google Scholar
  14. Bandura, A. (1977). Social learning theory. Oxford, England: Prentice-Hall.Google Scholar
  15. Banfield, J., Wyland, C. L., Macrae, C. N., Munte, T. F., & Heatherton, T. F. (2004). The cognitive neuroscience of self-regulation. In R. F. Baumeister & K. D. Vohs (Eds.), The handbook of self-regulation (pp. 63–83). New York: Guilford.Google Scholar
  16. Bannert, M. (2006). Effects of reflection prompts when learning with hypermedia. Journal of Educational Computing Research, 35(4), 359–375.CrossRefGoogle Scholar
  17. Bannert, M. (2009). Promoting self-regulated learning through prompts. Zeitschrift für Pädagogische Psychologie, 23(2), 139–145.CrossRefGoogle Scholar
  18. Bannert, M., Hildebrand, M., & Mengelkamp, C. (2009). Effects of a metacognitive support device in learning environments. Computers in Human Behavior, 25, 829–835.CrossRefGoogle Scholar
  19. Barrouillet, P. C., & Valérie. (2010). Working memory and executive control: A time-based resource-sharing account. Psychologica Belgica, 50, 353–382.CrossRefGoogle Scholar
  20. Bench, C. J., Frith, C. D., Grasby, P. M., & Friston, K. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31(9), 907–922. doi: 10.1016/0028-3932(93)90147-R.Google Scholar
  21. Broadbent, D. E. (1953). Perception and communication. Pergamon Press.Google Scholar
  22. Bundesen, C. (1990). A theory of visual attention. Psychology Review, 97, 523–547.CrossRefGoogle Scholar
  23. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.CrossRefGoogle Scholar
  24. Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting stroop: An interference task specialized for functional neuroimaging. Validation study with functional MRI. Human Brain Mapping, 6, 270–282.CrossRefGoogle Scholar
  25. Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Inference and facilitation effects during selective attention: An H215O PET study of stroop task performance. NeuroImage, 2, 264–272.CrossRefGoogle Scholar
  26. Chein, J. M., & Feiz, A. F. (2010). Evaluating models of working memory through the effects of concurrent irrelevant information. Journal of Experimental Psychology. General, 139(1), 117–137.CrossRefGoogle Scholar
  27. Constantinidis, C., & Procyk, E. (2004). The primate working memory networks. Cognitive, Affective and Behavioral Neuroscience, 4, 444–465.CrossRefGoogle Scholar
  28. Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  29. Cuevas, H. M., Fiore, S. M., Bowers, C. A., & Salas, E. (2004). Fostering constructive cognitive and metacognitive activity in computer-based complex task training environments. Computers in Human Behavior, 20, 225–241.CrossRefGoogle Scholar
  30. Cummings, M. (1994). Frontal-subcortical circuits and neuropsychiatric disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 6, 358–370.Google Scholar
  31. D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London B, 363, 761–772.CrossRefGoogle Scholar
  32. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRefGoogle Scholar
  33. Dinsmore, D. L., Alexander, P. A., & Loughlin, S. M. (2008). Focusing the conceptual lens on metacognition, self-regulation, and self-regulated learning. Educational Psychology Review, 20, 391–409.CrossRefGoogle Scholar
  34. Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14.CrossRefGoogle Scholar
  35. Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9(2), 288–307.CrossRefGoogle Scholar
  36. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.CrossRefGoogle Scholar
  37. Forster, S., & Lavie, N. (2007). High perceptual load makes everybody equal: Eliminating individual differences in distractibility with load. Psychological Science, 18, 377–382.CrossRefGoogle Scholar
  38. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.CrossRefGoogle Scholar
  39. Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43(8), 1204–1213.CrossRefGoogle Scholar
  40. Graesser, A. C., McNamara, D. S., & VanLehn, K. (2005). Scaffolding deep comprehension strategies through point and query, AutoTutor, and iSTART. Educational Psychologist, 40(4), 225–234.CrossRefGoogle Scholar
  41. Hartley, K., & Bendixen, L. D. (2003). The use of comprehension aids in a hypermedia environment: Investigating the impact of metacognitive awareness and epistemological beliefs. Journal of Educational Multimedia and Hypermedia, 12(3), 275–289.Google Scholar
  42. Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224.CrossRefGoogle Scholar
  43. Kaplan, A. (2008). Clarifying metacognition, self-regulation, and self-regulated learning: What’s the purpose? Educational Psychology Review, 20, 477–484.CrossRefGoogle Scholar
  44. Knight, R. T., Staines, W. R., Swick, D., & Chao, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica, 101, 159–178.CrossRefGoogle Scholar
  45. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.CrossRefGoogle Scholar
  46. Lavie, N. (2005). Distracted and confused?: Selective attention underload. Trends in Cognitive Science, 9, 75–82.CrossRefGoogle Scholar
  47. Lewandowsky, S., & Oberauer, K. (2008). The word-length effect provides no evidence for decay in short-term memory. Psychonomic Bulletin & Review, 15(5), 875–888. doi: 10.3758/PBR.15.5.875.CrossRefGoogle Scholar
  48. Logie, R. H., Della Sala, S., Wynn, V., Baddeley, A. D. (2000). Division of attention in Alzheimer’s disease. Paper presented at the Psychonomics Society meeting, Los Angeles, CA.Google Scholar
  49. Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in mental arithmetic. Memory & Cognition, 22, 395–410.CrossRefGoogle Scholar
  50. Manlove, S., Lazonder, A. W., & de Jong, T. (2007). Software scaffolds to promote regulation during scientific learning. Metacognition and Learning, 2, 141–155. doi: 10.1007/s11409-007-9012-y.CrossRefGoogle Scholar
  51. McGlynn, S. M., & Kaszniak, A. W. (1991). When metacognition fails: Impaired awareness of deficit in Alzheimer’s disease. Journal of Cognitive Neuroscience, 3(2), 184–189.CrossRefGoogle Scholar
  52. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle Scholar
  53. Moscovitch, M., & Melo, B. (1997). Strategic retrieval and the frontal lobes: Evidence from confabulation and amnesia. Neuropsychologia, 35(7), 1017–1034.CrossRefGoogle Scholar
  54. Moshman, D. (1982). Exogenous, endogenous, and dialectical constructivism. Developmental Review, 2(4), 371–384. doi: 10.1016/0273-2297(82)90019-3.CrossRefGoogle Scholar
  55. Nagel, C. (2009). Neural correlates of depth of strategic reasoning in medial prefrontal cortex. ****PNAS, 106(23), 9163–9168.Google Scholar
  56. Nelson, T., & Narens, N. (1990). Metamemory: A theoretical framework and new findings. Psychology of Learning and Motivation, 26, 125–301.CrossRefGoogle Scholar
  57. Nolde, S. F., Johnson, M. K., & D’Esposito, M. (1998). Left prefrontal activation during episodic remembering: An event-related fMRI study. Neuroreport, 9(15), 3509–3514.CrossRefGoogle Scholar
  58. Pannu, J. K., Kaszniak, A. W., & Rapcsak, S. Z. (2005). Metamemory for faces following frontal lobe damage. Journal of the International Neuropsychological Society, 11, 668–676.CrossRefGoogle Scholar
  59. Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42(1), 2–13.CrossRefGoogle Scholar
  60. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276(5313), 821–824.CrossRefGoogle Scholar
  61. Rawley, J. B., & Constantinidis, C. (2009). Neural correlates of learning and working memory in the primate posterior parietal cortex. Neurobiology of Learning and Memory, 91(2), 129–138.CrossRefGoogle Scholar
  62. Raye, C. L., Johnson, M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. (2007). Refreshing: A minimal executive function. Cortex, 43, 135–145.CrossRefGoogle Scholar
  63. Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139(1), 5–21.CrossRefGoogle Scholar
  64. Rossi-Arnaud, C., Pieroni, L., & Baddeley, A. (2006). Symmetry and binding in visuo-spatial working memory. Neuroscience, 139(1), 393–400.CrossRefGoogle Scholar
  65. Rouet, J.-F., & Le Bigot, L. (2007). Effects of academic training on metatextual knowledge and hypertext navigation. Metacognition and Learning, 2, 157–168. doi: 10.1007/s11409-007-9011-z.CrossRefGoogle Scholar
  66. Rugg, M. D., Fletcher, P. C., Chua, P. M. L., & Dolan, R. J. (1999). The role of the prefrontal cortex in recognition memory and memory for source: An fMRI study. NeuroImage, 10(5), 520–529.CrossRefGoogle Scholar
  67. Saeki, E., & Saito, S. (2004). Effect of articulatory suppression on task switching performance: Implications of models of working memory. Memory, 12, 257–271.CrossRefGoogle Scholar
  68. Schnyer, D. M., Verfaellie, M., Alexander, M. P., LaFleche, G., Nicholls, L., & Kaszniak, A. W. (2004). A role for right medial prefrontal cortex in accurate feeling-of-knowing judgments: Evidence from patients with lesions to frontal cortex. Neuropsychologia, 42(7), 957–966.CrossRefGoogle Scholar
  69. Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111–139.CrossRefGoogle Scholar
  70. Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371.CrossRefGoogle Scholar
  71. Schwartz, N. H., Anderson, C., Hong, N., Howard, B., & McGee, S. (2004). The influence of metacognitive skills on learners’ memory of information in a hypermedia environment. Journal of Educational Computing Research, 31(1), 77–93.CrossRefGoogle Scholar
  72. Schwartz, N. H., Oppy, B., & Gust, K. (1999). Learning and the web: The role of metacognition and configurational knowledge in comprehension and problem solving. Proceedings of Metacognition: Products and Processes. France: Universite Blaise Pascal, Clermont-Ferrand.Google Scholar
  73. Scott, B., & Schwartz, N. H. (2007). Navigational spatial displays: The role of metacognition as cognitive load. Learning and Instruction, 17, 89–105.CrossRefGoogle Scholar
  74. Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  75. Shimamura, A. P. (2000). The role of prefrontal cortex in dynamic filtering. Psychobiology, 28(2), 207–218.Google Scholar
  76. Shimamura, A. P. (2008). A Neurocognitive approach to metacognitive monitoring and control. In J. Dunlosky & R. Bjork (Eds.), Handbook of memory and metacognition. Mahwah, NJ: Erlbaum.Google Scholar
  77. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.CrossRefGoogle Scholar
  78. Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342–348.CrossRefGoogle Scholar
  79. Veenman, M. V. J., Prins, F. J., & Elshout, J. J. (2002). Initial inductive learning in a complex computer simulated environment: The role of metacognitive skills and intellectual ability. Computers in Human Behavior, 18, 327–341.CrossRefGoogle Scholar
  80. Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411(6840), 953–956.CrossRefGoogle Scholar
  81. Wolters, G., & Raffone, A. (2008). Coherence and recurrency: Maintenance, control and integration in working memory. Cognitive Processing, 9(1), 1–17. doi: 10.1007/s10339-007-0185-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Neil H. Schwartz
    • 1
    • 2
    • 3
    • 4
    Email author
  • Brianna M. Scott
    • 5
  • Doris Holzberger
    • 6
  1. 1.Department of PsychologyCalifornia State UniversityChicoUSA
  2. 2.International Cognitive Visualization ProgramChicoUSA
  3. 3.GrenobleFrance
  4. 4.LandauGermany
  5. 5.University of IndianapolisIndianapolisUSA
  6. 6.University of FrankfurtFrankfurtGermany

Personalised recommendations