Microresonators for Communication and Signal Processing Applications



Photonic microresonators exhibit a great potential for various advanced functions for communication and signal processing applications. In this chapter, we briefly review recent advances in achieving space-, power-, and spectrally efficient chip-scale optical devices and subsystems using microresonators. With an emphasis on signal integrity and system performance, we describe microresonator-based channel adding/dropping in time-division-multiplexing systems, signal generation and demodulation for advanced optical data formats, and frequency comb generation for arbitrary waveform generation.


  1. 1.
    Kaminow, I.P., Li, T., et al. Optical fiber telecommunications. 5th Edition. Academic Press, Elsevier, San Diego (2008)Google Scholar
  2. 2.
    Ishikawa, H. Ultrafast all-optical signal processing devices. John Wiley & Sons, New Jersey (2008)Google Scholar
  3. 3.
    Kobrinsky, M. J., Block, B.A., et al. On-chip optical interconnects. Intel Technol. J. 8, 129–142 (2004)Google Scholar
  4. 4.
    Barwicz, T., Byun, H., et al. Silicon photonics for compact, energy-efficient interconnects. J. Opt. Networking 6, 63–73 (2007)CrossRefGoogle Scholar
  5. 5.
    Shacham, A., Bergman, K. Building ultralow-latency interconnection networks using photonic integration. IEEE Micro. 27, 6–20 (2007)CrossRefGoogle Scholar
  6. 6.
    Beausoleil, R.G., Ahn, J., et al. A nanophotonic interconnect for high-performance many-core computation. IEEE LEOS Newsletter 22, 15–22 (2008)Google Scholar
  7. 7.
    Krishnamoorthy, A.V., Zheng, X., et al. Optical interconnects for present and future high-performance computing systems. Proceed. 16th annual IEEE symposium on high-performance interconnects, no. 4618590, 175–177 (2008)Google Scholar
  8. 8.
    McCall, S.L., Levi, A.F.J., et al. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992)CrossRefGoogle Scholar
  9. 9.
    Choi, S.J., Djordjev, K., et al. Microdisk lasers vertically coupled to output waveguides. IEEE Photon. Technol. Lett. 15, 1330–1332 (2003)CrossRefGoogle Scholar
  10. 10.
    Scheuer, J., Green, W.M.J., et al. Low-threshold two-dimensional annular Bragg lasers. Opt. Lett. 29, 2641–2643 (2004)CrossRefGoogle Scholar
  11. 11.
    Lee, J.Y., Luo, X., et al. Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators. Opt. Express 15, 14650–14666 (2007)CrossRefGoogle Scholar
  12. 12.
    Barrios, C.A., Lipson, M. Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration. J. Appl. Phys. 96, 6008–6015 (2004)CrossRefGoogle Scholar
  13. 13.
    Sadagopan, T., Choi, S.J., et al. Carrier-induced refractive index changes in InP based circular microresonators for low-voltage high-speed modulation. IEEE Photon. Technol. Lett. 17, 414–416 (2005)CrossRefGoogle Scholar
  14. 14.
    Xu, Q., Schmidt, B., et al. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)CrossRefGoogle Scholar
  15. 15.
    Kekatpure, R.D., Brongersma, M.L., et al. Design of a silicon-based field-effect electro-optic modulator with enhanced light–charge interaction. Opt. Lett. 30, 2149–2151 (2005)CrossRefGoogle Scholar
  16. 16.
    Li, C., Zhou, L., et al. Silicon microring carrier-injection based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Opt. Express 15, 5069–5076 (2007)CrossRefGoogle Scholar
  17. 17.
    Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  18. 18.
    Popovíc, M. A., Barwicz, T., et al. Multistage high-order microring-resonator add-drop filters. Opt. Lett. 31, 2571–2573 (2006)CrossRefGoogle Scholar
  19. 19.
    Van, V. Dual-mode microring reflection filters. J. Lightw. Technol. 25, 3142–3150 (2007)CrossRefGoogle Scholar
  20. 20.
    Xiao, S., Khan, M.H., et al. A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt. Express 15, 14765–14771 (2007)CrossRefGoogle Scholar
  21. 21.
    Rabus, D.G., Hamacher, M., et al. High-Q channel-dropping filters using ring resonators with integrated SOAs. IEEE Photon. Technol. Lett. 14, 1442–1444 (2002)CrossRefGoogle Scholar
  22. 22.
    Amarnath, K., Grover, R., et al. Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation. IEEE Photon. Technol. Lett. 17, 2280–2282 (2005)CrossRefGoogle Scholar
  23. 23.
    Mookherjea, S. Using gain to tune the dispersion relation of coupled-resonator optical waveguides. IEEE Photon. Technol. Lett. 18, 715–717 (2006)CrossRefGoogle Scholar
  24. 24.
    Poon, J. K. S., Yariv, A. Active coupled-resonator optical waveguides. I. Gain enhancement and noise. J. Opt. Soc. Am. B 24, 2378–2388 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Soref, R.A., Little, B.E. Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators. IEEE Photon. Technol. Lett. 10, 1121–1123 (1998)CrossRefGoogle Scholar
  26. 26.
    Van, V., Ibrahim, T.A., et al. All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photon. Technol. Lett. 14, 74–76 (2002)CrossRefGoogle Scholar
  27. 27.
    Vlasov, Y., Green, W. M. J., et al. High-throughput silicon nanophotonic deflection switch for on-chip optical networks. Nat. Photon. 2, 242–246 (2008)CrossRefGoogle Scholar
  28. 28.
    Van, V., Ibrahim, T.A., et al. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quant. Electron. 8, 705–713 (2002)MATHCrossRefGoogle Scholar
  29. 29.
    Xu, Q., Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007)CrossRefGoogle Scholar
  30. 30.
    Mikroulis, S., Simos, H., et al. 40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator. J. Lightw. Technol. 24, 1159–1164 (2006)CrossRefGoogle Scholar
  31. 31.
    Preble, S.F., Xu, Q., et al. Changing the color of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007)CrossRefGoogle Scholar
  32. 32.
    Turner, A.C., Foster, M.A., et al. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008)CrossRefGoogle Scholar
  33. 33.
    Li, Q., Zhang, Z., et al. Dense wavelength conversion and multicasting in a resonance-split silicon microring. Appl. Phys. Lett. 93, 081113 (2008)CrossRefGoogle Scholar
  34. 34.
    Poon, J.K.S., Scheuer, J., et al. Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004)CrossRefGoogle Scholar
  35. 35.
    Xu, Q., Sandhu, S., et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006)CrossRefGoogle Scholar
  36. 36.
    Madsen, C.K., Lenz, G., et al. Multistage dispersion compensator using ring resonators. Opt. Lett. 24, 1555–1557 (1999)CrossRefGoogle Scholar
  37. 37.
    Hossein-Zadeh, M., Vahala, K.J. Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices. IEEE Photon. Technol. Lett. 19, 1045–1047 (2008)CrossRefGoogle Scholar
  38. 38.
    Zhang, L., Song, M., et al. A compact chromatic dispersion compensator using unequal and mutually-coupled microring resonators. Integrated Photonics and Nanophotonics Research and Applications (IPNRA), paper IWA3 (2008)Google Scholar
  39. 39.
    Zhang, L., Yang, J.-Y., et al. Microring-based modulation and demodulation of DPSK signal. Opt. Express 15, 11564–11569 (2007)CrossRefGoogle Scholar
  40. 40.
    Zhang, L., Yang, J.-Y., et al. Monolithic modulator and demodulator of DQPSK signals based on silicon microrings. Opt. Lett. 33, 1428–1430 (2008)CrossRefGoogle Scholar
  41. 41.
    Lu, Y., Liu, F., et al. All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators. Opt. Express 15, 14275–14282 (2007)CrossRefGoogle Scholar
  42. 42.
    Blair, S., Chen, Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001)CrossRefGoogle Scholar
  43. 43.
    Boyd, R.W., Heebner, J. E. Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)CrossRefGoogle Scholar
  44. 44.
    Yalcin, A., Popat, K.C., et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. Electron. 12, 148–154 (2006)CrossRefGoogle Scholar
  45. 45.
    Armani, A., Vahala, K., et al. Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 31, 1896–1898 (2006)CrossRefGoogle Scholar
  46. 46.
    De Vos, K., Bartolozzi, I., et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)CrossRefGoogle Scholar
  47. 47.
    Geisler, D.J., Fontaine, N.K., et al. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. Opt. Express 17, 15911–15925 (2009)CrossRefGoogle Scholar
  48. 48.
    Liu, A., Jones, R., et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004)CrossRefGoogle Scholar
  49. 49.
    Liu, A., Samara-Rubio, D., et al. Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator. IEEE J. Sel. Top. Quant. Electron. 11, 367–372 (2005)CrossRefGoogle Scholar
  50. 50.
    Barrios, C.A. Electrooptic modulation of multisilicon-on-insulator photonic wires. J. Lightw. Technol. 24, 2146–2155 (2006)CrossRefGoogle Scholar
  51. 51.
    Passaro, V.M.N., Dell’Olio, F. Scaling and optimization of MOS optical modulators in nanometer SOI waveguides. IEEE Trans. Nanotechnol. 7, 401–408 (2008)CrossRefGoogle Scholar
  52. 52.
    Gardes, F.Y., Reed, G.T., et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express 13, 8845–8854 (2005)CrossRefGoogle Scholar
  53. 53.
    A. Liu, L. Liao et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007)CrossRefGoogle Scholar
  54. 54.
    Watts, M. R., Trotter, D. C., et al. Ultralow power silicon microdisk modulators and switches. Proceed. 5th IEEE Int. Conf. Group IV Photonics, 4–6 (2008)Google Scholar
  55. 55.
    Png, C.E., Chan, S. P., et al. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J. Lightw. Technol. 22, 1573–1582 (2004)CrossRefGoogle Scholar
  56. 56.
    Gan, F., Kartner, F.X. High-speed silicon electrooptic modulator design. IEEE Photon. Technol. Lett. 17, 1007–1009 (2005)CrossRefGoogle Scholar
  57. 57.
    Xu, Q., Schmidt, B., et al. Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express 14, 9430–9435 (2006)Google Scholar
  58. 58.
    Xu, Q., Manipatruni, S., et al. 12.5 Gbit/s carrier-injection-based silicon microring silicon modulators. Opt. Express. 15, 430–436 (2007)CrossRefGoogle Scholar
  59. 59.
    Green, W.M.J., Rooks, M.J., et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007)CrossRefGoogle Scholar
  60. 60.
    Soref, R.A., Bennett, B.R. Electrooptical effects in silicon. IEEE J. Quant. Electron. QE-23, 123–129 (1987)CrossRefGoogle Scholar
  61. 61.
    Lockwood, D.J., Pavesi, L. Silicon photonics. Springer-Verlag GmbH, Heidelberg (2004)Google Scholar
  62. 62.
    Rabiei, P., Steier, W. H., et al. Polymer micro-ring filters and modulators. J. Lightw. Technol. 20, 1968–1975 (2002)CrossRefGoogle Scholar
  63. 63.
    Baehr-Jones, T., Hochberg, M., et al. Optical modulation and detection in slotted Silicon waveguides. Opt. Express 13, 5216–5226 (2005)CrossRefGoogle Scholar
  64. 64.
    Haus, H.A. Waves and fields in optoelectronics. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632, 197–206 (1984)Google Scholar
  65. 65.
    Akahane, Y., Asano, T., et al. Two-dimensional photonic-crystal-slab channel drop filter with flat-top response. Opt. Express 13, 2512–2530 (2005)CrossRefGoogle Scholar
  66. 66.
    Li, Y., Zhang, L., et al. Coupled-ring-resonator-based silicon modulator for enhanced performance. Opt. Express 16, 13342–13348 (2008)CrossRefGoogle Scholar
  67. 67.
    Sacher, W.D., Poon, J.K.S. Dynamics of microring resonator modulators. Opt. Express 16, 15741–15753 (2008)CrossRefGoogle Scholar
  68. 68.
    Zhang, L., Song, M., et al. Embedded ring resonators for micro-photonic applications, Opt. Letters 33, 1978–1980 (2008)CrossRefGoogle Scholar
  69. 69.
    Green, W.M.J., Rooks, M.J., et al. Optical modulation using anti-crossing between paired amplitude and phase resonators. Opt. Express 15, 17264–17272 (2007)CrossRefGoogle Scholar
  70. 70.
    Song, M., Zhang, L., et al. Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links. IEEE J. Sel. Top. Quant. Electron., to be published Jan./Feb. 2010.Google Scholar
  71. 71.
    Heebner, J.E., Wong, V., et al. Optical transmission characteristics of fiber ring resonators. IEEE J. Quant. Electron. 40, 726–730 (2004)CrossRefGoogle Scholar
  72. 72.
    Stapleton, A., Farrell, S., et al. Optical phase characterization of active semiconductor microdisk resonators in transmission. Appl. Phys. Lett. 88, 031106 (2006)CrossRefGoogle Scholar
  73. 73.
    Zhang, L., Li, Y., et al. Silicon-based single ring resonator modulators for intensity modulation, IEEE J. Sel. Top. Quant. Electron., to be published Jan./Feb. 2010.Google Scholar
  74. 74.
    Almeida, V.R., Barrios, C.A., et al. All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004)CrossRefGoogle Scholar
  75. 75.
    Downie, J.D. Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise. J. Lightw. Technol. 23, 2031–2038 (2005)CrossRefGoogle Scholar
  76. 76.
    Spirit, D.M., Ellis, A.D., et al. Optical time division multiplexing: Systems and networks. IEEE Commun. Mag. 32, 56–62 (1994)CrossRefGoogle Scholar
  77. 77.
    Hansryd, J., Andrekson, P.A., et al. Fiber-based optical parametric amplifiers and their applications IEEE J. Sel. Top. Quant. Electron. 8, 506–520 (2002)Google Scholar
  78. 78.
    Igarashi, K., Kikuchi, K. Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems. IEEE J. Sel. Top. Quant. Electron. 14, 551–565 (2008)CrossRefGoogle Scholar
  79. 79.
    Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321 (2000)CrossRefGoogle Scholar
  80. 80.
    Gnauck, A.H., Winzer, P.J. Optical phase-shift-keyed transmission. J. Lightw. Technol. 23, 115–130 (2005)CrossRefGoogle Scholar
  81. 81.
    Winzer, P.J., Essiambre, R.-J. Advanced optical modulation formats. Proceed. of IEEE 94, 952–985 (2006)CrossRefGoogle Scholar
  82. 82.
    Ciaramella, E., Contestabile, G., et al. A novel scheme to detect optical DPSK signals. IEEE Photon. Technol. Lett. 16, 2138–2140 (2004)CrossRefGoogle Scholar
  83. 83.
    Lyubomirsky, I., Chien, C. DPSK demodulator based on optical discriminator filter. IEEE Photon. Technol. Lett. 17, 492–494 (2005)CrossRefGoogle Scholar
  84. 84.
    Christen, L., Lize, Y. K., et al. Fiber Bragg grating balanced DPSK demodulation. Proceed. of IEEE LEOS Annual Meeting, 563–564 (2006)Google Scholar
  85. 85.
    Van, V., Ding, T.-N., et al. Group delay enhancement in circular arrays of microring resonators. IEEE Photon. Technol. Lett. 20, 997–999 (2008)CrossRefGoogle Scholar
  86. 86.
    Xia, F., Sekaric, L., et al. Ultra-compact optical buffers on a silicon chip. Nat. Photon. 1, 65–71 (2007)CrossRefGoogle Scholar
  87. 87.
    Xu, Q., Fattal, D., et al. Silicon microring resonators with 1.5-μm radius. Opt. Express 16, 4309–4315 (2008)CrossRefGoogle Scholar
  88. 88.
    Zhang, L., Yang, J.-Y., et al. Monolithic modulator and demodulator of DQPSK signals based on silicon microrings. Opt. Lett. 33, 1428–1430 (2008)CrossRefGoogle Scholar
  89. 89.
    Zhang, L., Song, M., et al. Generating spectral-efficient duobinary data format from silicon ring resonator modulators. ECOC paper Tu.3.C.4. (2008)Google Scholar
  90. 90.
    Udem, T., Holzwarth, R., et al. Optical frequency metrology. Nature 416, 233–237 (2002)CrossRefGoogle Scholar
  91. 91.
    Cundiff, S.T., Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003)CrossRefGoogle Scholar
  92. 92.
    Diddams, S.A., Jones, D.J., et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000)CrossRefGoogle Scholar
  93. 93.
    Thorpe, M.J., Moll, K.D., et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006)CrossRefGoogle Scholar
  94. 94.
    Murphy, M.T., Udem, Th., et al. High-precision wavelength calibration with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839–847 (2007)CrossRefGoogle Scholar
  95. 95.
    Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)CrossRefGoogle Scholar
  96. 96.
    Jiang, Z., Huang, C., et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photon. 1, 463–467 (2007)CrossRefGoogle Scholar
  97. 97.
    Kippenberg, T.J., Spillane, S.M., et al. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004)CrossRefGoogle Scholar
  98. 98.
    Del’Haye, P., Schliesser, A., et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007)CrossRefGoogle Scholar
  99. 99.
    Dulkeith, E., Xia, F., et al. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006)CrossRefGoogle Scholar
  100. 100.
    Turner, A.C., Manolatou, C., et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006)CrossRefGoogle Scholar
  101. 101.
    Liu, X.P., Green, W.M.J., et al. Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires. Opt. Lett. 33, 2889–2891 (2008)CrossRefGoogle Scholar
  102. 102.
    Zhang, L., Yue, Y., et al. Achieving uniform chromatic dispersion over a wide wavelength range in highly nonlinear slot waveguides. Frontiers in Optics 2009, paper FThE2 (OSA, Oct. 11–15, 2009, San Jose, CA, USA).Google Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Optical Communication Laboratory, Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations