Radial Bragg Resonators

Chapter

Abstract

Circular resonators are promising candidates for a wide range of applications, ranging from optical communication systems through basic research involving highly confined fields and strong photon–atom interactions to biochemical and rotation sensing. The main characteristics of circular resonators are the Q factor, the free spectral range (FSR), and the modal volume, where the last two are primarily determined by the resonator radius. The total internal reflection (TIR) mechanism used for guidance in “conventional” resonators couples these attributes and limits the ability to realize compact devices exhibiting large FSR, small modal volume, and high Q. Recently, a new class of annular resonator, based on a single defect surrounded by radial Bragg reflectors, has been proposed and analyzed. The radial Bragg confinement decouples the modal volume from the Q and paves the way for the realization of compact, low-loss resonators. These properties as well as the unique mode profile of these circular Bragg nanoresonators (CBNRs) and nanolasers (CBNLs) make the devices within this class an excellent tool to realize nanometer scale semiconductor lasers and ultrasensitive detectors, as well as to study nonlinear optics.

References

  1. 1.
    Madsen, C.K., Zhao, J.H. Optical filter design and analysis: a signal processing approach. Wiley-Interscience, New York, NY (1999)CrossRefGoogle Scholar
  2. 2.
    Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P. Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  3. 3.
    Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 14, 483–485 (2002)CrossRefGoogle Scholar
  4. 4.
    Heebner, J.E., Boyd, R.W. ‘Slow’ and ‘fast’ light in resonator-coupled waveguides. J. Mod. Opt. 49, 2629–2636 (2002)CrossRefGoogle Scholar
  5. 5.
    Chao, C.Y., Guo, L.J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)CrossRefGoogle Scholar
  6. 6.
    Boyd, R.W., Heebner, J.E., Lepeshkin, N.N., Park, Q.H., Schweinsberg, A., Wicks, G.W., Baca, A.S., Fajardo, J.E., Hancock, R.R., Lewis, M.A., Boysel, R.M., Quesada, M., Welty, R., Bleier, A.R., Treichler, J., Slusher, R.E. Nanofabrication of optical structures and devices for photonics and biophotonics. J. Mod. Opt. 50, 2543–2550 (2003)CrossRefGoogle Scholar
  7. 7.
    Vahala, K.J. Optical microcavities. Nature 424, 839–846 (2003)CrossRefGoogle Scholar
  8. 8.
    Marcatili, E.A.J. Bends in optical dielectric guides. Bell Syst. Tech. J. 48, 2103–2132 (1969)Google Scholar
  9. 9.
    Scheuer, J., Yariv, A. Annular Bragg defect mode resonators. J. Opt. Soc. Am. B 20, 2285–2291 (2003)CrossRefGoogle Scholar
  10. 10.
    Scheuer, J., Green, W.M.J., DeRose, G., Yariv, A. Low-threshold two-dimensional annular Bragg lasers. Opt. Lett. 29, 2641–2643 (2004)CrossRefGoogle Scholar
  11. 11.
    Scheuer, J., Green, W.M.J., DeRose, G.A., Yariv, A. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Appl. Phys. Lett. 86, 251101 (2005)CrossRefGoogle Scholar
  12. 12.
    Loncar, M., Scherer, A., Qiu, Y.M. Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4650 (2003)CrossRefGoogle Scholar
  13. 13.
    Chow, E., Grot, A., Mirkarimi, L.W., Sigalas, M., Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004)CrossRefGoogle Scholar
  14. 14.
    Yeh, P., Yariv, A., Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978)CrossRefGoogle Scholar
  15. 15.
    Wu, C., Svilans, M., Fallahi, M., Templeton, I., Makino, T., Glinski, J., Maciejko, R., Najafi, S.I., Maritan, C., Blaauw, C., Knight, G. Room temperature operation of electrically pumped surface-emitting circular grating DBR laser. Electron. Lett. 28, 1037–1039 (1992)CrossRefGoogle Scholar
  16. 16.
    Jordan, R.H., Hall, D.G., King, O., Wicks, G., Rishton, S. Lasing behavior of circular grating surface-emitting semiconductor lasers. J. Opt. Soc. Am. B 14, 449–453 (1997)CrossRefGoogle Scholar
  17. 17.
    Shams-Zadeh-Amiri, A.M., Li, X., Huang, W.P. Above-threshold analysis of second-order circular-grating DFB lasers. IEEE J. Quant. Electron. 36, 259–267 (2000)CrossRefGoogle Scholar
  18. 18.
    Bauer, C., Giessen, H., Schnabel, B., Kley, E.B., Schmitt, C., Scherf, U., Mahrt, R.F. A surface-emitting circular grating polymer laser. Adv. Mater. 13, 1161–1164 (2001)CrossRefGoogle Scholar
  19. 19.
    Barlow, G.F., Shore, A., Turnbull, G.A., Samuel, I.D.W. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. J. Opt. Soc. Am. B 21, 2142–2150 (2004)CrossRefGoogle Scholar
  20. 20.
    Sun, X.K., Scheuer, J., Yariv, A. Optimal design and reduced threshold in vertically emitting circular Bragg disk resonator lasers. IEEE J. Sel. Top. Quant. Electron. 13, 359–366 (2007)CrossRefGoogle Scholar
  21. 21.
    Sun, X.K., Yariv, A. Modal properties and modal control in vertically emitting annular Bragg lasers. Opt. Express 15, 17323–17333 (2007)CrossRefGoogle Scholar
  22. 22.
    Scheuer, J., Green, W.M.J., DeRose, G.A., Yariv, A. InGaAsP annular Bragg lasers: theory, applications, and modal properties. IEEE J. Sel. Top. Quant. Electron. 11, 476–484 (2005)CrossRefGoogle Scholar
  23. 23.
    Sun, X.K., Yariv, A. Surface-emitting circular DFB, disk-, and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study. Opt. Express 16, 9155–9164 (2008)CrossRefGoogle Scholar
  24. 24.
    Sun, X.K., Yariv, A. Surface-emitting circular DFB, disk-, and ring- Bragg resonator lasers with chirped gratings. II: nonuniform pumping and far-field patterns. Opt. Express 17, 1–6 (2009)Google Scholar
  25. 25.
    Fallahi, M., Dion, M., Chatenoud, F., Templeton, I.M., Barber, R., Sedivy, J. Low threshold CW operation of circular-grating surface-emitting DBR lasers using MQW and a self-aligned process. IEEE Photon. Technol. Lett. 6, 1280–1282 (1994)CrossRefGoogle Scholar
  26. 26.
    Coccioli, R., Boroditsky, M., Kim, K.W., Rahmat-Samii, Y., Yablonovitch, E. Smallest possible electromagnetic mode volume in a dielectric cavity. IEE Proc.-Optoelectron. 145, 391–397 (1998)CrossRefGoogle Scholar
  27. 27.
    Post, E.J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967)CrossRefGoogle Scholar
  28. 28.
    Arditty, H.J., Lefevre, H.C. Sagnac effect in fiber gyroscopes. Opt. Lett. 6, 401–403 (1981)CrossRefGoogle Scholar
  29. 29.
    Ezekiel, S., Smith, S.P., Zarinetchi, F. Basic principles of fiber-optic gyroscopes. In: Burns, W.K. (eds.), Optical fiber rotation sensing, chapter 1. Academic Press, Boston, MA (1994)Google Scholar
  30. 30.
    Leonhardt, U., Piwnicki, P. Ultrahigh sensitivity of slow-light gyroscope. Phys. Rev. A 62, 055801 (2000)CrossRefGoogle Scholar
  31. 31.
    Steinberg, B.Z. Rotating photonic crystals: a medium for compact optical gyroscopes. Phys. Rev. E 71, 056621 (2005)CrossRefGoogle Scholar
  32. 32.
    Scheuer, J., Yariv, A. Sagnac effect in coupled-resonator slow-light waveguide structures. Phys. Rev. Lett. 96, 053901 (2006)CrossRefGoogle Scholar
  33. 33.
    Matsko, A.B., Savchenkov, A.A., Ilchenko, V.S., Maleki, L. Optical gyroscope with whispering gallery mode optical cavities. Opt. Commun. 233, 107–112 (2004)CrossRefGoogle Scholar
  34. 34.
    Steinberg, B.Z., Scheuer, J., Boag, A. Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity. J. Opt. Soc. Am. B 24, 1216–1224 (2007)CrossRefGoogle Scholar
  35. 35.
    Scheuer, J. Direct rotation-induced intensity modulation in circular Bragg micro-lasers. Opt. Express 15, 15053–15059 (2007)CrossRefGoogle Scholar
  36. 36.
    Steinberg, B.Z., Boag, A. Splitting of microcavity degenerate modes in rotating photonic crystals – the miniature optical gyroscopes. J. Opt. Soc. Am. B 24, 142–151 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Sunada, S., Harayama, T. Sagnac effect in resonant microcavities. Phys. Rev. A 74, 021801 (2006)CrossRefGoogle Scholar
  38. 38.
    Steinberg, B.Z., Shamir, A., Boag, A. Two-dimensional Green’s function theory for the electrodynamics of a rotating medium. Phys. Rev. E 74, 016608 (2006)CrossRefGoogle Scholar
  39. 39.
    Scheuer, J., Yariv, A. Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators. IEEE J. Quant. Electron. 39, 1555–1562 (2003)CrossRefGoogle Scholar
  40. 40.
    Scheuer, J., Yariv, A. Circular photonic crystal resonators. Phys. Rev. E 70, 036603 (2004)CrossRefGoogle Scholar
  41. 41.
    Watson, G.N. A treatise on the theory of Bessel functions, 2nd edn. Cambridge Univ. Press, Cambridge, UK (1952)Google Scholar
  42. 42.
    Luff, B.J., Harris, R.D., Wilkinson, J.S., Wilson, R., Schiffrin, D.J. Integrated-optical directional coupler biosensor. Opt. Lett. 21, 618–620 (1996)CrossRefGoogle Scholar
  43. 43.
    Luff, B.J., Wilkinson, J.S., Piehler, J., Hollenbach, U., Ingenhoff, J., Fabricius, N. Integrated optical Mach-Zehnder biosensor. J. Lightwave Technol. 16, 583–592 (1998)CrossRefGoogle Scholar
  44. 44.
    Boyd, R.W., Heebner, J.E. Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)CrossRefGoogle Scholar
  45. 45.
    Coldren, L.A., Corzine, S.W. Diode lasers and photonic integrated circuits. Wiley-Interscience, New York, NY (1995)Google Scholar
  46. 46.
    Kim, S.H., Ryu, H.Y., Park, H.G., Kim, G.H., Choi, Y.S., Lee, Y.H., Kim, J.S. Two-dimensional photonic crystal hexagonal waveguide ring laser. Appl. Phys. Lett. 81, 2499–2501 (2002)CrossRefGoogle Scholar
  47. 47.
    Yoshie, T., Shchekin, O.B., Chen, H., Deppe, D.G., Scherer, A. Planar photonic crystal nanolasers (II): low-threshold quantum dot lasers. IEICE Trans. Electron. E87-C, 300–307 (2004)Google Scholar
  48. 48.
    Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)CrossRefGoogle Scholar
  49. 49.
    Scheuer, J., Green, W.M., DeRose, G., Yariv, A. Ultra-sensitive biochemical sensor based on circular Bragg micro-cavities. In: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Baltimore, MD, May, 2005), paper CPDA7Google Scholar
  50. 50.
    Scheuer, J. Ultra-sensitive biochemical optical detection using distributed feedback nano-lasers. In: Fan, X. (ed.), Advanced photonic structures for bio/chemical detection. Springer, New York (2009).Google Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.School of Electrical Engineering, Department of Physical ElectronicsTel-Aviv UniversityRamat-AvivIsrael
  2. 2.Department of Applied PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations