Advertisement

Advanced Multi-start Methods

  • R. Martí
  • J. Marcos Moreno-Vega
  • A. Duarte
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 146)

Abstract

Heuristic search procedures that aspire to find globally optimal solutions to hard combinatorial optimization problems usually require some type of diversification to overcome local optimality. One way to achieve diversification is to re-start the procedure from a new solution once a region has been explored. In this chapter we describe the best known multi-start methods for solving optimization problems. We propose classifying these methods in terms of their use of randomization, memory, and degree of rebuild. We also present a computational comparison of these methods on solving the maximum diversity problem in terms of solution quality and diversification power.

Notes

Acknowledgements

The authors want to thank Prof. Fred Glover for his valuable comments to improve this chapter in both presentation and content. This research was partially supported by the Ministerio de Educación y Ciencia (TIN2006-02696, TIN2009-07516, TIN2009-13363), by the Comunidad de Madrid-Universidad Rey Juan Carlos project (CCG08-URJC/TIC-3731), and by the Gobierno de Canarias project (PI2007/019).

References

  1. 1.
    Ackley, D.H.: An empirical study of bit vector function optimization. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 170–204. Morgan Kaufmann, Pitman, London (1987)Google Scholar
  2. 2.
    Baluja, S.: An Empirical Comparison of 7 iterative evolutionary function optimization heuristics. School of computer science, Carnegie Mellon University, Pittsburgh, PA (1995)Google Scholar
  3. 3.
    Beausoleil, R.P., Baldoquin, G., Montejo, R.: A Multi-start and path relinking methods to deal with multiobjective knapsack problems. Ann Oper. Res. 157, 105–133 (2008)CrossRefGoogle Scholar
  4. 4.
    Binato, S., Faria, Jr. H., Resende, M.G.C: Greedy randomized adaptive path relinking. In: MIC2001 Conference Proceedings, Porto, Portugal (2001)Google Scholar
  5. 5.
    Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimisation. Oper. Res. Lett. 16, 103–113 (1994)CrossRefGoogle Scholar
  6. 6.
    Bronmo, G., Christiansen, M., Fagerholt, K., Nygreen, B.: In: Corne, D., Dorigo, M., Glover, F. (eds.) A multi-start local search heuristic for ship scheduling-a computational study. Comput. Oper. Res. 34, 900–917 (2007)Google Scholar
  7. 7.
    Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problems with time windows. Ann. Oper. Res. 60, 3–27 (1995)Google Scholar
  8. 8.
    Duarte, A., Martí, R.: Tabu Search and GRASP for the Maximum Diversity Problem. Eur. J. Oper. Res. 178, 71–84 (2007)CrossRefGoogle Scholar
  9. 9.
    Feo, T., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)CrossRefGoogle Scholar
  10. 10.
    Feo, T., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim. 2, 1–27 (1995)Google Scholar
  11. 11.
    Fleurent, C., Glover, F.: Improved constructive multi-start strategies for the quadratic assignment problem using adaptive memory. INFORMS J. Comput. 11, 198–204 (1999)CrossRefGoogle Scholar
  12. 12.
    Ghosh, J.B.: Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19, 175–181 (1996)CrossRefGoogle Scholar
  13. 13.
    Glover, F: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–166 (1977)CrossRefGoogle Scholar
  14. 14.
    Glover, F.: Tabu search: a tutorial. Interfaces 20, 74–94 (1990)CrossRefGoogle Scholar
  15. 15.
    Glover, F. Multi-start and strategic oscillation methods – principles to exploit adaptive memory. In: Laguna, M., Gonzalez-Velarde, J.L. (eds.) Computing Tools for Modeling Optimization and Simulation, pp. 1–25 Kluwer, Bostan, MA (2000)CrossRefGoogle Scholar
  16. 16.
    Glover, F., Kuo, C.C., Dhir, K.S.: Heuristic algorithms for the maximum diversity problem. J. Inf. Optim. Sci. 19, 109–132 (1998)Google Scholar
  17. 17.
    Glover, F., Laguna, M.: Tabu Search, Modern Heuristics Techniques for Combinatorial Optimization Problems, In: Reeves, C. (ed.) pp. 70–141 Blackwell Scientific Publishing, Oxford (1993)Google Scholar
  18. 18.
    Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston, MA (1997)CrossRefGoogle Scholar
  19. 19.
    Glover, F., Laguna, M., Martí, R.: Scatter Search in Theory and Applications of Evolutionary Computation: Recent Trends, In: Ghosh, A., Tsutsui, S. (eds.), pp. 519–529. Springer, New York, NY (2002)Google Scholar
  20. 20.
    Hagen, L.W., Kahng, A.B.: Combining problem reduction and adaptive multi-start: a new technique for superior iterative partitioning. IEEE Trans. CAD 16, 709–717 (1997)Google Scholar
  21. 21.
    Hickernell, F.J., Yuan, Y.: A simple multistart algorithm for global optimization. OR Trans. 1, 1–11 (1997)Google Scholar
  22. 22.
    Hu, X., Shonkwiler, R., Spruill, M.C.: Random Restarts in Global Optimization. Georgia Institute of Technology, Atlanta (1994)Google Scholar
  23. 23.
    Kuo, C.C., Glover, F., Dhir, K.: Analyzing and modeling the maximum diversity problem by zero-one programming. Decis. Sci. 24, 1171–1185 (1993)CrossRefGoogle Scholar
  24. 24.
    Laguna, M., Feo, T., Elrod, H.: A greedy randomized adaptive search procedure for the 2-partition problem. Oper. Res. 42, 677–687 (1994)CrossRefGoogle Scholar
  25. 25.
    Laguna, M., Martí, R.: GRASP and Path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11, 44–52 (1999)CrossRefGoogle Scholar
  26. 26.
    Lokketangen, A., Glover, F.: Probabilistic move selection in tabu search for 0/1 mixed integer programming problems. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory and Practice, pp. 467–488 Kluwer, Boston, MA (1996)Google Scholar
  27. 27.
    Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135, 450–459 (2001)CrossRefGoogle Scholar
  28. 28.
    Mayne, D.Q., Meewella, C.C.: A non-clustering multistart algorithm for global optimization. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and Optimization of Systems. Lecture Notes in Control and Information Science, vol. 111, pp. 334–345. Springer, New York, NY (1988)Google Scholar
  29. 29.
    Mezmaz, M., Melab, N., Talbi, E.G.: Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: 2nd IEEE International Conference on e-Science and Grid Computing, Washington, DC, USA, Art. No. 4031085 (2006)Google Scholar
  30. 30.
    Moreno, J.A., Mladenovic, N., Moreno-Vega, J.M.: An statistical analysis of strategies for multistart heuristic searches for p-facility location-allocation problems. In: 8th Meeting of the EWG on Locational Analysis Lambrecht, Germany (1995)Google Scholar
  31. 31.
    Moscato, P.: Memetic algorithms. New Ideas in Optimization, In: Corne, D., Dorigo, M., Glover, F. (eds.) pp. 219–235 Mc Graw Hill, New York, NY (1999)Google Scholar
  32. 32.
    Patterson, R., Pirkul, H., Rolland, E.: Adaptive reasoning technique for the capacitated minimum spanning tree problem. J. Heuristics 5, 159–180 (1999)CrossRefGoogle Scholar
  33. 33.
    Prais, M., Ribeiro, C.C.: Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment. INFORMS J. Comput. 12, 164–176 (2000)CrossRefGoogle Scholar
  34. 34.
    Resende, M.G.C.: Computing approximate solutions for the maximum covering problem using GRASP. J. Heuristics 4, 161–171 (1998)CrossRefGoogle Scholar
  35. 35.
    Resende, M.G.C., Martí, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max-min diversity problem, Comput. Oper. Res. 37, 498–508 (2010)CrossRefGoogle Scholar
  36. 36.
    Rinnooy Kan, A.H.G., Timmer, G.T.: Global optimization. In: Rinnooy Kan, A.H.G., Todd, M.J. (eds.) Handbooks in Operations Research and Management Science, vol. 1, pp. 631–662. North Holland, Amsterdam (1998)Google Scholar
  37. 37.
    Rochat, Y., Taillard, R.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1, 147–167 (1995)CrossRefGoogle Scholar
  38. 38.
    Russell, R.A.: Hybrid heuristics for the vehicle routing problem with time windows. Trans. Sci. 29, 156–166 (1995)CrossRefGoogle Scholar
  39. 39.
    Silva, G.C., Ochi, L.S., Martins, S.L.: Experimental comparison of greedy randomized adaptive search procedures for the maximum diversity problem. Lect. Notes Comput. Sci. 3059, 498–512 (2004)CrossRefGoogle Scholar
  40. 40.
    Solis, F., Wets, R.: Minimization by random search techniques. Math. Oper. Res. 6, 19–30 (1981)CrossRefGoogle Scholar
  41. 41.
    Tu, W., Mayne, R.W.: An approach to multi-start clustering for global optimization with non-linear constraints. Int. J. Numer. Methods Eng. 53, 2253–2269 (2002)CrossRefGoogle Scholar
  42. 42.
    Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.J., Van Laarhoven, P.J.M., Pesch, E.: Genetic local search algorithms for the traveling salesman problem. In: Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature, pp. 109–116 Springer (1990)Google Scholar
  43. 43.
    Wattenberg, M., Juels, A.: Stochastic hillclimbing as a baseline method for evaluationg genetic algorithms. University of California at Berkeley, CSD94-834 (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain
  2. 2.Departamento de Estadística, IO y ComputaciónUniversidad de La Laguna, La Laguna Santa Cruz de TenerifeTenerifeSpain
  3. 3.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations