Genetic Programming

  • William B. LangdonEmail author
  • Robert I. McKayEmail author
  • Lee SpectorEmail author
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 146)


Welcome to genetic programming, where the forces of nature are used to automatically evolve computer programs. We give a flavour of where GP has been successfully applied (it is far too wide an area to cover everything) and interesting current and future research but start with a tutorial of how to get started and finish with common pitfalls to avoid.


Search Space Fitness Function Genetic Programming Parse Tree Tournament Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Turing, A.M.: Intelligent machinery. Report for National Physical Laboratory. Reprinted in Ince, D.C. (ed.) (1992) Mechanical Intelligence: Collected Works of A.M. Turing. (1948)Google Scholar
  2. 2.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)Google Scholar
  3. 3.
    Darwin, C.: The Origin of Species, 1985 edn. John Murray, Penguin classics (1859)Google Scholar
  4. 4.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetisc Programming– An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco, CA, USA (1998)Google Scholar
  5. 5.
    Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via and freely available at, (2008) (With contributions by Koza, J.R.)
  6. 6.
    Darwin, C.: Voyage of the Beagle. Henry Colburn, London, penguin classics, 1989 edition, (1839)Google Scholar
  7. 7.
    Nordin, P., Banzhaf, W., Francone, F.D.: Efficient evolution of machine code for CISC architectures using instruction blocks and homologous crossover. In: Spector, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, chapter 12, pp. 275–299. MIT Press, Cambridge, MA, USA (1999)Google Scholar
  8. 8.
    Foster, J.A.: Review: Discipulus: a commercial genetic programming system. GP&EM, 2(2), 201–203 (2001)Google Scholar
  9. 9.
    Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. EC, 5(1), 17–26 (2001)Google Scholar
  10. 10.
    Poli, R.: Discovery of symbolic, neuro-symbolic and neural networks with parallel distributed genetic programming. Technical Report CSRP-96-14, University of Birmingham, School of Computer Science, August 1996. Presented at 3rd International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA’97Google Scholar
  11. 11.
    Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators. In: Angeline, P.J., Kinnear, Jr., K.E. (eds.) Advances in Genetic Programming 2, chapter 3, pp. 45–68. MIT Press, Cambridge, MA, USA (1996)Google Scholar
  12. 12.
    Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. EC, 10(2), 167–174 (2006)Google Scholar
  13. 13.
    Langdon, W.B.: Size fair and homologous tree genetic programming crossovers. GP&EM, 1(1/2), 95–119 (2000)Google Scholar
  14. 14.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, (1989)Google Scholar
  15. 15.
    Angeline, P.J.: Subtree crossover: building block engine or macromutation? In: Koza et al., J.R. (eds.) GP 1997, pp. 9–17. Morgan Kaufmann, Stanford, 13–16 Jul.Google Scholar
  16. 16.
    Braitenberg, V.: Vehicles. MIT Press, (1984)Google Scholar
  17. 17.
    Poli, R., Page, J., Langdon, W.B.: Smooth uniform crossover, sub-machine code GP and demes: A recipe for solving high-order boolean parity problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary ComputationConference, volume 2, pp. 1162–1169. Morgan Kaufmann, Orlando, Florida, USA (1999)Google Scholar
  18. 18.
    Chomsky, N.: Three models for the description of language. IEEE Trans. Inf. Theory, 2(3), 113–124 (1956)CrossRefGoogle Scholar
  19. 19.
    Montana, D.J.: Strongly typed genetic programming. Evol. Comput., 3(2), 199–230 (1995)CrossRefGoogle Scholar
  20. 20.
    Recknagel et al., F.: Comparative application of artificial neural networks and genetic algorithms for multivariate time series modelling of algal blooms in freshwater lakes. HydroInformatic, 4(2), 125–134 (2002)Google Scholar
  21. 21.
    Ratle, A., Sebag, M.: Genetic programming and domain knowledge: Beyond the limitations of grammar-guided machine discovery. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., JulianMerelo, J., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature – PPSN VI 6th International Conference, volume 1917 of LNCS, pp. 211–220. Springer Verlag, Paris, France (2000)Google Scholar
  22. 22.
    Wong, M.L., Leung, K.S.: Inductive logic programming using genetic algorithms. In: Brahan, J.W., Lasker, G.E. (eds.) Advances in Artificial Intelligence - Theory and Application II, pp. 119–124. I.I.A.S., Ontario, Canada (1994)Google Scholar
  23. 23.
    Hussain, T.S., Browse, R.A.: Attribute grammars for genetic representations of neural networks and syntactic constraints of genetic programming. In Workshop on Evolutionary Computation. Held at the 12 Candadian Conference on Artificial Intelligence, Vancouver, Canada (1998)Google Scholar
  24. 24.
    Paterson, N.R., Livesey, M.: Distinguishing genotype and phenotype in genetic programming. In: John, R. Koza, (ed.) Late Breaking Papers at the Genetic Programming1996 Conference Stanford University July 28–31, 1996, pp. 141–150. Stanford Bookstore, Stanford University, CA, USA 28–31 (1996)Google Scholar
  25. 25.
    Ryan et al., C.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf et al., W. (eds.) EuroGP, LNCS 1391, pp. 83–95. Paris, 14–15 Apr (1998)Google Scholar
  26. 26.
    Hoai et al., N.X.: Representation and structural difficulty in genetic programming. IEEE Trans. EC, 10(2), 157–166 (2006)Google Scholar
  27. 27.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci. 10, 136–163 (1975)CrossRefGoogle Scholar
  28. 28.
    Ratle, A., Sebag, M.: Avoiding the bloat with probabilistic grammar-guided genetic programming. In: Collet et al., P. (eds), EA 2001, LNCS 2310, pp. 255–266Google Scholar
  29. 29.
    Shan, Y., McKay, R.I., Baxter, R., Abbass, H., Essam, D., Hoai, N.X.: Grammar model-based program evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 478–485. IEEE Press, Portland, Oregon (2004)Google Scholar
  30. 30.
    Bosman, P.A.N., de Jong, E.D.: Grammar transformations in an EDA for genetic programming. In: Poli, R., Cagnoni, S., Keijzer, M., Costa, E., Pereira, F., Raidl, G., Upton, S.C., Goldberg, D., Lipson, H., de Jong, E., Koza, J., Suzuki, H., Sawai, H., Parmee, I., Pelikan, M., Sastry, K., Thierens, D., Stolzmann, W., Lanzi, P.L., Wilson, S.W., O’Neill, M., Ryan, C., Yu, T., Miller, J.F., Garibay, I., Holifield, G., Wu, A.S., Riopka, T., Meysenburg, M.M., Wright, A.W., Richter, N., Moore, J.H., Ritchie, M.D., Davis, L., Roy, R., Jakiela, M., (eds.) GECCO 2004 Workshop Proceedings, Seattle, Washington, USA 26–30 (2004)Google Scholar
  31. 31.
    Langdon, W.B., Poli, R.: Mapping non-conventional extensions of genetic programming. Natural Comput., 7, 21–43 (2008)CrossRefGoogle Scholar
  32. 32.
    Teller, A.: The evolution of mental models. In: Kinnear, Jr., K.E. (ed.) Advances in GP, ch 9, pp. 199–219. MIT Press (1994)Google Scholar
  33. 33.
    Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming +Data Structures = Automatic Programming!, volume 1 of Genetic Programming. Kluwer, Boston, (1998)Google Scholar
  34. 34.
    Yu, T., Clack, C.: PolyGP: A polymorphic genetic programming system in haskell. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 416–421. University of Wisconsin, Madison, Wisconsin, USA, Morgan Kaufmann. (1998)Google Scholar
  35. 35.
    Binard, F., Felty, A.: Genetic programming with polymorphic types and higher order functions. In: Keijzer, M., Antoniol, G., Congdon, C.B., Deb, K., Doerr, B., Hansen, N., Holmes, J.H., Hornby, G.S., Howard, D., Kennedy, J., Kumar, S., Lobo, F.G., Miller, J.F., Moore, J., Neumann, F., Pelikan, M., Pollack, J., Sastry, K., Stanley, K., Stoica, A., Talbi, El-G., Wegener, I. (eds.) GECCO ’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 1187–1194. ACM, Atlanta, GA, USA (2008)CrossRefGoogle Scholar
  36. 36.
    Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push programming language. GP&EM, 3(1), 7–40 (2002)Google Scholar
  37. 37.
    Spector, L., Klein, J., Keijzer, M.: The push3 execution stack and the evolution of control. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong, E.D., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2, pp. 1689–1696. ACM Press, Washington DC, USA (2005)Google Scholar
  38. 38.
    Koza, J.R., Andre, D.: Evolution of iteration in genetic programming. In: Fogel, L.J., Angeline, P.J., Baeck, T. (eds.) Evolutionary ProgrammingV: Proceedings of the Fifth Annual Conference on Evolutionary Programming, San Diego, MIT Press, (1996)Google Scholar
  39. 39.
    Yu, T.: Hierachical processing for evolving recursive and modular programs using higher order functions and lambda abstractions. GP&EM, 2(4), 345–380 (2001)Google Scholar
  40. 40.
    Whigham, P.A., McKay, R.I.: Genetic approaches to learning recursive relations. In: Yao, X. (ed.) Progress in Evolutionary Computation, LNAI 956, pp. 17–27. Springer (1995)Google Scholar
  41. 41.
    Brave, S.: Evolving recursive programs for tree search. In: Angeline, P.J., Kinnear, Jr., K.E. (eds.) Advances in Genetic Programming 2, chapter 10, pp. 203–220. MIT Press, Cambridge, MA, USA (1996)Google Scholar
  42. 42.
    Wong, M.L., Leung, K.S.: Evolving recursive functions for the even-parity problem using genetic programming. In: Angeline, P.J., Kinnear, Jr., K.E. (eds.) Advances in GP 2, ch 11, pp. 221–240. MIT Press (1996)Google Scholar
  43. 43.
    Yu, T.: A higher-order function approach to evolve recursive programs. In: Yu et al., T. (eds.) GPTP III, ch 7, pp. 93–108. Springer, Ann Arbor, 12-14 May (2005)Google Scholar
  44. 44.
    Agapitos, A., Lucas, S.M.: Learning recursive functions with object oriented genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) Proceedings of the 9th European Conference on Genetic Programming, volume 3905 of Lecture Notes in Computer Science, pp. 166–177. Budapest, Hungary, Springer (2006)Google Scholar
  45. 45.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts, (1994)Google Scholar
  46. 46.
    Koza et al., J.R.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman (1999)Google Scholar
  47. 47.
    Angeline, P.J., Pollack, J.: Evolutionary module acquisition. In: Fogel, D., Atmar, W. (eds.) Proceedings of the Second Annual Conference on Evolutionary Programming, pp. 154–163. La Jolla, CA, USA (1993)Google Scholar
  48. 48.
    Kinnear, K.E. Jr.: Alternatives in automatic function definition: A comparison of performance. In: Kinnear, K.E. Jr., (ed.) Advances in Genetic Programming, chapter 6, pp. 119–141. MIT Press, (1994)Google Scholar
  49. 49.
    Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in cartesian genetic programming. IEEE Trans. EC 12(4), 397–417 (2008)Google Scholar
  50. 50.
    Spector, L.: Simultaneous evolution of programs and their control structures. In: Angeline, P.J., Kinnear, K.E. Jr.,: (eds.) Advances in Genetic Programming 2, chapter 7, pp. 137–154. MIT Press, Cambridge, MA, USA (1996)Google Scholar
  51. 51.
    Bruce, W.S.: Automatic generation of object-oriented programs using genetic programming. In: Koza et al., J.R. (eds.) GP 1996, pp. 267–272. MIT Press, Stanford, 28–31 Jul 1996Google Scholar
  52. 52.
    Lucas, S.: Exploiting reflection in object oriented genetic programming. In: Keijzer et al., M. (eds.) EuroGP, LNCS 3003, pp. 369–378. Springer 5–7 Apr (2004)Google Scholar
  53. 53.
    Briggs, F., O’Neill, M.: Functional genetic programming with combinators. In: Pham et al., T.L. (eds.) Proceedings of the Third Asian-Pacific workshop on Genetic Programming, ASPGP, pp. 110–127, Military Technical Academy, Hanoi, Vietnam (2006)Google Scholar
  54. 54.
    Banzhaf, W.: Genotype-phenotype-mapping and neutral variation – A case study in genetic programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature III, volume 866 of LNCS, pp. 322–332, Springer-Verlag, Jerusalem (1994)Google Scholar
  55. 55.
    Jacob, C.: Genetic L-system programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature III, volume 866 of LNCS, pp. 334–343. Springer-Verlag, Jerusalem (1994)Google Scholar
  56. 56.
    Spector, L., Stoffel, K.: Ontogenetic programming. In: Koza et al., J.R. (eds.) GP-96, pp. 394–399. Stanford, MIT Press 28–31 Jul (1996)Google Scholar
  57. 57.
    Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In: Thierens, D., Beyer, H.-G., Bongard, J., Branke, J., Clark, J.A., Cliff, D., Congdon, C.B., Deb, K., Doerr, B., Kovacs, T., Kumar, S., Miller, J.F., Moore, J., Neumann, F., Pelikan, M., Poli, R., Sastry, K., Stanley, K.O., Stutzle, T., Watson, R.A., Wegener, I. (eds.) GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, volume 1, pp. 1021–1028. ACM Press, London (2007)Google Scholar
  58. 58.
    Gruau, F.: Genetic micro programming of neural networks. In: Kinnear, Jr., Kenneth, E. (ed.) Advances in Genetic Programming, chapter 24, pp. 495–518. MIT Press, (1994)Google Scholar
  59. 59.
    Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, (2003)Google Scholar
  60. 60.
    Gottlieb, G.: Individual development and evolution: The genesis of novel behavior. Oxford University Press, New York (1992)Google Scholar
  61. 61.
    Gottlieb, G.: Individual development and evolution: The genesis of novel behavior. Oxford University Press, New York (1992)Google Scholar
  62. 62.
    Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf et al., W. (eds), ECAI, LNAI 2801, pp. 256–265. Springer 14–17 Sep (2003)Google Scholar
  63. 63.
    Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Palaniswami, M., Attikiouzel, Y. (eds.) Computational Intelligence: A Dynamic Systems Perspective, pp. 152–163. IEEE Press, (1995)Google Scholar
  64. 64.
    Meyer-Nieberg, S., Beyer, H.-G.: Self-adaptation in evolutionary algorithms. Parameter Setting in Evolutionary Algorithm. Springer (2006)Google Scholar
  65. 65.
    Schmidhuber, J.: Evolutionary principles in self-referential learning. on learning now to learn: the meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14 May (1987)Google Scholar
  66. 66.
    Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation. CPM Report 98-32, Centre for Policy Modelling, Manchester Metropolitan University, UK, AytounSt., Manchester, M1 3GH. UK, (1998)Google Scholar
  67. 67.
    Lohn et al., J.: Evolutionary antenna design for a NASA spacecraft. In: O’Reilly et al., U.-M. eds. GPTP II, ch 18, pp. 301–315. Springer, Ann Arbor, 13–15 May 2004Google Scholar
  68. 68.
    Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. Genet. Prog. Evol. Mach., 5(3), 251–257, (2004)CrossRefGoogle Scholar
  69. 69.
    Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Finding a betterthan-classical quantumAND/OR algorithm using genetic programming. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, volumeGoogle Scholar
  70. 70.
    Spector, L., Bernstein, H.J.: Communication capacities of some quantum gates, discovered in part through genetic programming. In: Shapiro, Jeffrey H., Hirota, O. (eds) Proceedings of the Sixth International Conference on Quantum Communication, Measurement, and Computing (QCMC), pp. 500–503. Rinton Press, (2003)Google Scholar
  71. 71.
    Jordaan, E., Kordon, A., Chiang, L., Smits, G.: Robust inferential sensors based on ensemble of predictors generated by genetic programming. In: Yao, X., Burke, E., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J., Tiňo Ata Kabán, P., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature – PPSN VIII, volume 3242 of LNCS, pp. 522–531. Springer-Verlag Birmingham, UK (2004)Google Scholar
  72. 72.
    Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. GP&EM, 5(3), 251–257 (2004)Google Scholar
  73. 73.
    Hampo, R.J., Marko, K.A.: Application of genetic programming to control of vehicle systems. In: Proceedings of the Intelligent Vehicles ’92 Symposium, pp. 191–195. IEEE, Detroit, Mi, USA (1992)Google Scholar
  74. 74.
    D. H. and S.C. Roberts. Incident detection on highways. In U.-M. O’Reilly et al., eds., GPTP II, ch 16, pp 263–282. Springer, Ann Arbor, 13-15 May (2004)Google Scholar
  75. 75.
    Ross et al., B.J.: Hyperspectral image analysis using genetic programming. Appl. Soft Comput. 5(2), 147–156 (2005)CrossRefGoogle Scholar
  76. 76.
    Zhang, M., Smart, W., Using gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern. Recognit. Lett., 27(11), 1266–1274, Evolutionary Computer Vision and Image Understanding. (2006)CrossRefGoogle Scholar
  77. 77.
    Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theory, 51(4), 1523–1545 (2005)CrossRefGoogle Scholar
  78. 78.
    Klassen, T.J., Heywood, M.I.: Towards the on-line recognition of arabic characters. In Proceedings of the 2002 International Joint Conference on Neural Networks IJCNN’02, pp. 1900–1905. IEEE Press, Hilton Hawaiian Village Hotel, Honolulu, Hawaii, (2002)Google Scholar
  79. 79.
    De Stefano et al., C.: Character preclassification based on genetic programming. Pattern Recogn. Lett. 23(12), 1439–1448 (2002)CrossRefGoogle Scholar
  80. 80.
    Teredesai, A., Govindaraju, V.: GP-based secondary classifiers. Pattern Recogn. 38(4), 505–512 (2005)CrossRefGoogle Scholar
  81. 81.
    Parkins, A.D., Nandi, A.K.: Genetic programming techniques for hand written digit recognition. Signal Process., 84(12), 2345–2365 Dec (2004)CrossRefGoogle Scholar
  82. 82.
    Quintana et al., M.I.: Morphological algorithm design for binary images using genetic programming. GP&EM, 7(1), 81–102 (2006)Google Scholar
  83. 83.
    Martin, M.C. Evolving visual sonar: Depth from monocular images. Pattern RecognitionLetters, 27(11), 1174–1180 Evolutionary Computer Vision and Image Understanding. (2006)CrossRefGoogle Scholar
  84. 84.
    Usman et al., I.: Image authenticity and perceptual optimization via genetic algorithm and a dependence neighborhood. IJAMCS, 4(1), 615–620 (2007)Google Scholar
  85. 85.
    Chen, S.-H., Liao, C.-C.: Agent-based computational modeling of the stock price-volume relation. Information Sciences, 170(1), 75–100 (2005)CrossRefGoogle Scholar
  86. 86.
    Yu, T., Chen, S.-H.: Using genetic programming with lambda abstraction to find technical trading rules. In: Computing in Economics and Finance, University of Amsterdam, (2004)Google Scholar
  87. 87.
    Neely et al., C.J.: Is technical analysis in the foreign exchange market profitable? A GP approach. J. Finan. Quant. Anal. 32(4), 405–426 (1997)CrossRefGoogle Scholar
  88. 88.
    Marney, J.P., Miller, D., Fyfe, C., Tarbert, H.F.E.: Risk adjusted returns to technical trading rules: a genetic programming approach. In: 7th International Conference of Society of Computational Economics, Yale, 28–29 (2001)Google Scholar
  89. 89.
    Neely et al., C.J.: The adaptive markets hypothesis: evidence from the foreign exchange market. Working Paper 2006-046B, Federal Reserve Bank of St. Louis Rev (2007)Google Scholar
  90. 90.
    Kaboudan, M.: Extended daily exchange rates forecasts using wavelet temporal resolutions. New Math. Nat. Comput. 1, 79–107 (2005)CrossRefGoogle Scholar
  91. 91.
    Tsang et al., E.P.K.: EDDIE beats the bookies. Softw. Pract. Exper., 28(10), 1033–1043 (1998)CrossRefGoogle Scholar
  92. 92.
    Austin et al., M.P.: Adaptive systems for foreign exchange trading. Quant. Finan., 4(4), 37–45 (2004)CrossRefGoogle Scholar
  93. 93.
    Pillay, N.: Evolving solutions to ASCII graphics programming problems in intelligent programming tutors. In: Akerkar, R. ed. International Conference on Applied Artificial Intelligence (ICAAI’2003), pp. 236–243. Fort Panhala, Kolhapur, India TMRF. 15–16 Dec (2003)Google Scholar
  94. 94.
    Kordon, A.: Evolutionary computation in the chemical industry. In: Yu et al., T. (eds.) Evolutionary Computation in Practice, ch 11, pp. 245–262. Springer (2008)Google Scholar
  95. 95.
    Kovacic, M., Balic, J.: Evolutionary programming of a CNC cutting machine. Int. J. Advan. Manufact. Technol., 22(1–2), 118–124 (2003)CrossRefGoogle Scholar
  96. 96.
    Deschaine, L.: Using information fusion, machine learning, and global optimisation to increase the accuracy of finding and understanding items interest in the subsurface. GeoDrill. Int. 122, 30–32 May (2006)Google Scholar
  97. 97.
    Barriere, O., Lutton, E., Baudrit, C., Sicard, M., Pinaud, B., Perrot, N.: Modeling human expertise on a cheese ripening industrial process using GP. In: Rudolph, G. (ed.) PPSN X, volume 5199 of LNCS, Springer, Dortmund (2008)Google Scholar
  98. 98.
    Dassau et al., E.: Modeling and temperature control of rapid thermal processing. Comput. Chem. Eng., 30(4), 686–697 (2006)CrossRefGoogle Scholar
  99. 99.
    Rodriguez-Vazquez et al., K.: Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming. IEEE Trans. Syst., Man Cyberne., Part A, 34(4), 531–545 (2004)CrossRefGoogle Scholar
  100. 100.
    Kell, D.: Defence against the flood. Bioinformatics World, pp. 16–18. (2002)Google Scholar
  101. 101.
    Moore et al., J.H.: Symbolic discriminant analysis of microarray data in automimmune disease. Genet. Epidemiol., 23, 57–69 (2002)CrossRefGoogle Scholar
  102. 102.
    Barrett, S.J., Langdon, W.B.: Advances in the application of machine learning techniques in drug discovery, design and development. In: Tiwari, A., Knowles, J., Avineri, E., Dahal, K., Roy, R. (eds.) Applications of Soft Computing:Recent Trends, Advances in Soft Computing, pp. 99–110. On the World Wide Web, Springer, (2006)Google Scholar
  103. 103.
    Bains et al., W.: Evolutionary computational methods to predict oral bioavailability QSPRs. Curr. Opin. Drug Discov. Develop., 5(1), 44–51 (2002)Google Scholar
  104. 104.
    Fukunaga, A.: Automated discovery of composite SAT variable selection heuristics. In: AAAI, pp. 641–648. (2002)Google Scholar
  105. 105.
    Keller, R.E., Poli, R.: Cost-benefit investigation of a genetic-programming hyperheuristic. In Evolution Artificielle, 8th International Conference, Lecture Notes in Computer Science, Tours, Springer, France (2007)Google Scholar
  106. 106.
    Azaria, Y., Sipper, M.: GP-gammon: genetically programming backgammon players. Gene. Program. Evolvable Mach., 6(3), 283–300 (2005)CrossRefGoogle Scholar
  107. 107.
    Funes, P., Sklar, E., Juille, H., Pollack, J.: Animal-animat coevolution: using the animal population as fitness function. In: Pfeifer et al., R. (eds.) SAB, pp. 525–533. Zurich, Aug 17–21 (1998). MIT PressGoogle Scholar
  108. 108.
    Machado, P., Romero, J. (eds.): The Art of Artificial Evolution. Springer (2008)Google Scholar
  109. 109.
    Spector, L., Alpern, A.: Criticism, culture, and the automatic generation of artworks. In: AAAI-94, pp. 3–8. Seattle, Washington, USA AAAI Press/MIT Press (1994)Google Scholar
  110. 110.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE, 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  111. 111.
    Langdon, W.B.: Global distributed evolution of L-systems fractals. In: Keijzer et al., M. (eds.) EuroGP’2004, LNCS 3003, pp. 349–358. Coimbra, Portugal, Springer 5–7 Apr (2004)Google Scholar
  112. 112.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. SIGGRAPH Comput. Graph., 21(4), 25–34 (1987)CrossRefGoogle Scholar
  113. 113.
    Koza et al., J.R.: Automatic creation of human-competitive programs and controllers by means of genetic programming. GP&EM, 1(1/2), 121–164 (2000)Google Scholar
  114. 114.
    Koza, J.R., Al-Sakran, S.H., Jones, L.W.: Automated re-invention of six patented optical lens systems using genetic programming. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong, E.D., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2, pp. 1953–1960. ACM Press, Washington DC, USA (2005)Google Scholar
  115. 115.
    Kinnear, K.E., Jr.: A perspective on the work in this book. In: Kinnear, Jr., K.E. (ed.) Advances in Genetic Programming, chapter 1, pp. 3–19. MIT Press, (1994)Google Scholar
  116. 116.
    Corney, D.P.A.: Intelligent analysis of small data sets for food design. Ph.D. thesis, University College, London (2002)Google Scholar
  117. 117.
    Daida, J.M., Hilss, A.M., Ward, D.J., Stephen, L.: Long. Visualizing tree structures in genetic programming. Genet. Prog. Evol. Mach., 6(1), 79–110 (2005)CrossRefGoogle Scholar
  118. 118.
    McPhee, N.F., Ohs, B., Hutchison, T., Semantic building blocks in genetic programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Alcazar, A.I.E., De Falco, I., Cioppa, A.D., Tarantino, E. (eds.) Proceedings of the 11th European Conference on Genetic Programming, EuroGP 2008,volume 4971 of Lecture Notes in Computer Science, pp. 134–145. Springer, Naples (2008)Google Scholar
  119. 119.
    Crane, E.F., McPhee, N.F.: The effects of size and depth limits on tree based genetic programming. In: Yu et al., T. (eds.) Genetic Programming Theory and Practice III, ch 15, pp. 223–240. Springer, Ann Arbor, 12–14 May (2005)Google Scholar
  120. 120.
    Spector, L., Klein, J.: Trivial geography in genetic programming. In: Yu et al., T. (eds.) GPTP III, ch 8, pp. 109–123. Springer, Ann Arbor, 12–14 May (2005)Google Scholar
  121. 121.
    Gelly, S., Teytaud, O., Bredeche, N., Schoenauer, M.: Universal consistency and bloat in GP. Issue on New Methods in Machine Learning. Theory Appl. Rev. d’Intelligence Artif., 20(6), 805–827 (2006)Google Scholar
  122. 122.
    Yu, T., Davis, D., Baydar, C., Roy, R. (eds.) Evolutionary Computation in Practice, volume 88 of Studies in Computational Intelligence. Springer, (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.School of Computer Science and EngineeringSeoul National UniversitySeoulKorea
  3. 3.School of Cognitive ScienceHampshire CollegeAmherstUSA

Personalised recommendations