Iterated Local Search: Framework and Applications

  • Helena R. Lourenço
  • Olivier C. Martin
  • Thomas Stützle
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 146)

Abstract

The key idea underlying iterated local search is to focus the search not on the full space of all candidate solutions but on the solutions that are returned by some underlying algorithm, typically a local search heuristic. The resulting search behavior can be characterized as iteratively building a chain of solutions of this embedded algorithm. The result is also a conceptually simple metaheuristic that nevertheless has led to state-of-the-art algorithms for many computationally hard problems. In fact, very good performance is often already obtained by rather straightforward implementations of the metaheuristic. In addition, the modular architecture of iterated local search makes it very suitable for an algorithm engineering approach where, progressively, the algorithms’ performance can be further optimized. Our purpose here is to give an accessible description of the underlying principles of iterated local search and a discussion of the main aspects that need to be taken into account for a successful application of it. In addition, we review the most important applications of this method and discuss its relationship to other metaheuristics.

References

  1. 1.
    Applegate, D., Cook, W.J., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Compt. 15(1), 82–92 (2003)CrossRefGoogle Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ (2006)Google Scholar
  3. 3.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford, UK (1996)Google Scholar
  4. 4.
    Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling. Manag. Sci. 44(2), 262–275 (1998)CrossRefGoogle Scholar
  5. 5.
    Battiti, R., Protasi, M.: Reactive search, a history-based heuristic for MAX-SAT. ACM J. Exp. Algorithmics 2 (1997)Google Scholar
  6. 6.
    Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)Google Scholar
  7. 7.
    Baum, E.B.: Iterated descent: a better algorithm for local search in combinatorial optimization problems. Technical Report, Caltech, Pasadena, CA, (1986). manuscriptGoogle Scholar
  8. 8.
    Baum, E.B.: Towards practical “neural” computation for combinatorial optimization problems. In: Denker, J. (ed.) Neural Networks for Computing, pp. 53–64, (1986). AIP conference proceedings, Snowbird, UtahGoogle Scholar
  9. 9.
    Baxter, J.: Local optima avoidance in depot location. J. Oper. Res. Soc. 32, 815–819, (1981)Google Scholar
  10. 10.
    Bennell, J.A., Potts, C.N., Whitehead, J.D. Local search algorithms for the min-max loop layout problem. J. Oper. Res. Soc. 53(10), 1109–1117 (2002)CrossRefGoogle Scholar
  11. 11.
    Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA J. Comput., 4(4), 387–411 (1992)Google Scholar
  12. 12.
    Brucker, P., Hurink, J., and Werner, F. Improving local search heuristics for some scheduling problems–-part I. Discrete Appl. Math. 65(1–3), 97–122 (1996)CrossRefGoogle Scholar
  13. 13.
    Brucker, P., Hurink, J., and Werner, F. Improving local search heuristics for some scheduling problems–-part II. Discrete Appl. Math. 72(1–2), 47–69 (1997)CrossRefGoogle Scholar
  14. 14.
    Caramia, M., Dell’Olmo, P.: Coloring graphs by iterated local search traversing feasible and infeasible solutions. Discrete Appl. Math. 156(2), 201–217 (2008)CrossRefGoogle Scholar
  15. 15.
    Carlier, J.: The one-machine sequencing problem. Eur. J. Oper. Res. 11:42–47 (1982)CrossRefGoogle Scholar
  16. 16.
    Cerný, V.: A thermodynamical approach to the traveling salesman problem. J. Optim. Theory Appl. 45(1), 41–51 (1985)CrossRefGoogle Scholar
  17. 17.
    Chiarandini, M., Stützle, T.: An application of iterated local search to the graph coloring problem. In: Mehrotra, A., Johnson, D.S., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125, Ithaca, NY (2002)Google Scholar
  18. 18.
    Codenotti, B., Manzini, G., Margara, L., Resta, G.: Perturbation: an efficient technique for the solution of very large instances of the Euclidean TSP. INFORMS J. Comput. 8(2), 125–133 (1996)CrossRefGoogle Scholar
  19. 19.
    Congram, R.K.: Polynomially Searchable Exponential Neighbourhoods for Sequencing Problems in Combinatorial Optimization. PhD thesis, Southampton University, Faculty of Mathematical Studies, Southampton, UK (2000)Google Scholar
  20. 20.
    Congram, R.K., Potts, C.N., van de Velde, S.: An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS J. Comput. 14(1), 52–67 (2002)CrossRefGoogle Scholar
  21. 21.
    Cook, W.J., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)CrossRefGoogle Scholar
  22. 22.
    Cordeau, J.-F., Laporte, G., Pasin, F.: An iterated local search heuristic for the logistics network design problem with single assignment. Int. J. Production Econ. 113(2), 626–640 (2008)CrossRefGoogle Scholar
  23. 23.
    Cordeau, J.-F., Laporte, G., Pasin, F.: Iterated tabu search for the car sequencing problem. Eur. J. Oper. Res. 191(3), 945–956 (2008)CrossRefGoogle Scholar
  24. 24.
    Cordón, O., Damas, S.: Image registration with iterated local search. J. Heuristics 12(1–2), 73–94 (2006)CrossRefGoogle Scholar
  25. 25.
    de Campos, L.M., Fernández-Luna, J.M., Miguel Puerta, J.: An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests. Int. J. Intell. Syst. 18, 221–235, (2003)CrossRefGoogle Scholar
  26. 26.
    den Besten, M.L., Stützle, T., Dorigo, M.: Design of iterated local search algorithms: An example application to the single machine total weighted tardiness problem. In: Boers, E.J.W. et al. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2037, pp. 441–452. Springer, Berlin (2001)Google Scholar
  27. 27.
    Dong, X., Huang, H., Chen, P.: An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion. Comput. Opers. Res. 36(5), 1664–1669 (2009)CrossRefGoogle Scholar
  28. 28.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)CrossRefGoogle Scholar
  29. 29.
    Essafi, I., Mati, Y., Dauzère-Pèréz, S.: A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Comput. Oper. Res. 35(8), 2599–2616 (2008)CrossRefGoogle Scholar
  30. 30.
    Feo, T.A., Resende, M.G.C. Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)CrossRefGoogle Scholar
  31. 31.
    Fonlupt, C., Robilliard, D., Preux, P., Talbi, E.-G.: Fitness landscape and performance of meta-heuristics. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 257–268. Kluwer, Boston, MA (1999)CrossRefGoogle Scholar
  32. 32.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)CrossRefGoogle Scholar
  33. 33.
    Glover, F.: Tabu search – part I. ORSA J. Comput. 1(3), 190–206 (1989)Google Scholar
  34. 34.
    Glover, F.: Tabu thresholding: improved search by nonmonotonic trajectories. ORSA J. Comput. 7(4), 426–442 (1995)Google Scholar
  35. 35.
    Glover, F.: Scatter search and path relinking. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 297–316. McGraw Hill, London, UK (1999)Google Scholar
  36. 36.
    Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston, MA (1997)CrossRefGoogle Scholar
  37. 37.
    Grosso, A., Della Croce, F., Tadei, R.: An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem. Oper. Res. Lett. 32(1), 68–72 (2004)CrossRefGoogle Scholar
  38. 38.
    Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)CrossRefGoogle Scholar
  39. 39.
    Hashimoto, H., Yagiura, M., Ibaraki, T.: An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discrete Optim. 5(2), 434–456 (2008)CrossRefGoogle Scholar
  40. 40.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)CrossRefGoogle Scholar
  41. 41.
    Hong, I., Kahng, A.B., Moon, B.R.: Improved large-step Markov chain variants for the symmetric TSP. J. Heuristics 3(1), 63–81 (1997)CrossRefGoogle Scholar
  42. 42.
    Hoos, H.H., Stützle, T.: Stochastic Local Search–-Foundations and Applications. Morgan Kaufmann, San Francisco, CA (2005)Google Scholar
  43. 43.
    Hu, T.C., Kahng, A.B., Tsao, C.-W.A.: Old bachelor acceptance: a new class of non-monotone threshold accepting methods. ORSA J. Comput. 7(4), 417–425 (1995)Google Scholar
  44. 44.
    Ibaraki, T., Imahori, S., Nonobe, K., Sobue, K., Uno, T., Yagiura, M.: An iterated local search algorithm for the vehicle routing problem with convex time penalty functions. Discrete Appl. Math. 156(11), 2050–2069 (2008)CrossRefGoogle Scholar
  45. 45.
    Jacobs, L.W., Brusco, M.J.: A local search heuristic for large set-covering problems. Naval Res. Logistics 42(7), 1129–1140 (1995)CrossRefGoogle Scholar
  46. 46.
    Johnson, D.S.: Local optimization and the travelling salesman problem. In: Proceedings of the 17th Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 443, pp. 446–461. Springer, Berlin (1990)Google Scholar
  47. 47.
    Johnson, D.S., McGeoch, L.A.: The travelling salesman problem: a case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, Chichester (1997)Google Scholar
  48. 48.
    Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations, pp. 369–443. Kluwer, Dordrecht (2002)Google Scholar
  49. 49.
    Katayama, K., Narihisa, H.: Iterated local search approach using genetic transformation to the traveling salesman problem. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999), vol. 1, pp. 321–328. Morgan Kaufmann, San Francisco, CA (1999)Google Scholar
  50. 50.
    Katayama, K., Sadamatsu, M., Narihisa, H.: Iterated k-opt local search for the maximum clique problem. In: Cotta, C., van Hemert, J. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4446, pp. 84–95. Springer, Berlin (2007)CrossRefGoogle Scholar
  51. 51.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Technol. J. 49, 213–219 (1970)Google Scholar
  52. 52.
    Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefGoogle Scholar
  53. 53.
    Kreipl, S.: A large step random walk for minimizing total weighted tardiness in a job shop. J. Scheduling 3(3), 125–138 (2000)CrossRefGoogle Scholar
  54. 54.
    Laurent, B., Hao, J.-K.: Iterated local search for the multiple depot vehicle scheduling problem. Comput. Industrial Eng. 57(1), 277–286 (2009)CrossRefGoogle Scholar
  55. 55.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling salesman problem. Oper. Res. 21, 498–516 (1973)CrossRefGoogle Scholar
  56. 56.
    Lourenço, H.R.: Job-shop scheduling: computational study of local search and large-step optimization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)CrossRefGoogle Scholar
  57. 57.
    Lourenço, H.R.: A polynomial algorithm for a special case of the one–machine scheduling problem with time–lags. Technical Report Economic Working Papers Series, No. 339, Universitat Pompeu Fabra (1998)Google Scholar
  58. 58.
    Lourenço, H.R., Zwijnenburg, M.: Combining the large-step optimization with tabu-search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory & Applications, pp. 219–236. Kluwer, Boston, MA (1996)Google Scholar
  59. 59.
    Lozano, M., García-Martínez, C.: An evolutionary ILS-perturbation technique. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics, 5th International Workshop, HM 2008. Lecture Notes in Computer Science, vol. 5296, pp. 1–15. Springer, Berlin (2008)Google Scholar
  60. 60.
    Martin, O., Otto, S.W.: Partitioning of unstructured meshes for load balancing. Concurrency: Pract. Exp. 7, 303–314 (1995)CrossRefGoogle Scholar
  61. 61.
    Martin, O., Otto, S.W.: Combining simulated annealing with local search heuristics. Ann. Oper. Res. 63, 57–75 (1996)CrossRefGoogle Scholar
  62. 62.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5(3), 299–326 (1991)Google Scholar
  63. 63.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)CrossRefGoogle Scholar
  64. 64.
    Merz, P.: An iterated local search approach for minimum sum-of-squares clustering. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) Advances in Intelligent Data Analysis V, IDA 2003. Lecture Notes in Computer Science, vol. 2810 pp. 286–296. Springer, Berlin (2003)Google Scholar
  65. 65.
    Merz, P., Huhse, J.: An iterated local search approach for finding provably good solutions for very large TSP instances. In: Rudolph, G., Jansen, T., Lucas, S.M., Poloni, C., Beume, N. (eds.) Parallel Problem Solving from Nature–PPSN X. Lecture Notes in Computer Science, vol. 5199, pp. 929–939. Springer, Berlin (2008)Google Scholar
  66. 66.
    Mézard, M., Parisi, G., Virasoro, M.A.: Spin-Glass Theory and Beyond. Lecture Notes in Physics. vol. 9, World Scientific, Singapore (1987)Google Scholar
  67. 67.
    Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer, Berlin (2000)Google Scholar
  68. 68.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)CrossRefGoogle Scholar
  69. 69.
    Moscato, P., Cotta, C.: Memetic algorithms. In: González, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Computer and Information Science Series, Chapter 27. Chapman & Hall/CRC, Boca Raton, FL (2007)Google Scholar
  70. 70.
    Mühlenbein, H.: Evolution in time and space – the parallel genetic algorithm. In: Rawlings, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 316–337. Morgan Kaufmann, San Mateo, CA (1991)Google Scholar
  71. 71.
    Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)CrossRefGoogle Scholar
  72. 72.
    Paquete, L., Stützle, T.: An experimental investigation of iterated local search for coloring graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2279, pp. 122–131. Springer, Berlin (2002)Google Scholar
  73. 73.
    Ribeiro, C.C., Aloise, D., Noronha, T.F., Rocha, C., Urrutia, S.: A hybrid heuristic for a multi-objective real-life car sequencing problem with painting and assembly line constraints. Eur. J. Oper. Res. 191(3), 981–992 (2008)CrossRefGoogle Scholar
  74. 74.
    Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur. J. Oper. Res. 179(3), 775–787 (2007)CrossRefGoogle Scholar
  75. 75.
    Rodríguez-Martín, I., Salazar González, J.J.: Solving a capacitated hub location problem. Eur. J. Oper. Res. 184(2), 468–479 (2008)CrossRefGoogle Scholar
  76. 76.
    Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005)CrossRefGoogle Scholar
  77. 77.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)CrossRefGoogle Scholar
  78. 78.
    Schiavinotto, T., Stützle, T.: The linear ordering problem: instances, search space analysis and algorithms. J. Math. Modelling Algorithms 3(4), 367–402 (2004)CrossRefGoogle Scholar
  79. 79.
    Schreiber, G.R., Martin, O.C.: Cut size statistics of graph bisection heuristics. SIAM J. Optim. 10(1), 231–251 (1999)CrossRefGoogle Scholar
  80. 80.
    Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139–171 (2000)CrossRefGoogle Scholar
  81. 81.
    Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Xiang, Y., Chaib-draa, B. (eds.) Advances in Artificial Intelligence, 16th Conference of the Canadian Society for Computational Studies of Intelligence. Lecture Notes in Computer Science, vol. 2671, pp. 129–144. Springer, Berlin (2003)Google Scholar
  82. 82.
    Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical Report AIDA–98–04, FG Intellektik, TU Darmstadt, Darmstadt, Germany, August (1998)Google Scholar
  83. 83.
    Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)CrossRefGoogle Scholar
  84. 84.
    Stützle, T., Hoos, H.H.: Analysing the run-time behaviour of iterated local search for the travelling salesman problem. In: Hansen, P., Ribeiro, C. (eds.) Essays and Surveys on Metaheuristics, Operations Research/Computer Science Interfaces Series, pp. 589–611. Kluwer, Boston, MA (2001)Google Scholar
  85. 85.
    Stützle, T.: Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New Applications. Dissertations in Artificial Intelligence, vol. 220. IOS Press, Amsterdam, The Netherlands (1999)Google Scholar
  86. 86.
    Taillard, é.D.: Comparison of iterative searches for the quadratic assignment problem. Location Sci. 3, 87–105 (1995)CrossRefGoogle Scholar
  87. 87.
    Tang, L., Wang, X.: Iterated local search algorithm based on a very large-scale neighborhood for prize-collecting vehicle routing problem. Int. J. Adv. Manufact. Technol. 29(11–12), 1246–1258 (2006)CrossRefGoogle Scholar
  88. 88.
    Thierens, D.: Population-based iterated local search: restricting the neighborhood search by crossover. In: Deb, K. et al. (eds.) Genetic and Evolutionary Computation–GECCO 2004, Part II. Lecture Notes in Computer Science, vol. 3102, pp. 234–245. Springer, Berlin (2004)Google Scholar
  89. 89.
    Voudouris, C., Tsang, E.: Guided local search. Technical Report Technical Report CSM-247, Department of Computer Science, University of Essex, Colchester, UK (1995)Google Scholar
  90. 90.
    Yagiura, M., Ibaraki, T.: Efficient 2 and 3-flip neighborhood search algorithms for the MAX SAT: experimental evaluation. J. Heuristics 7(5), 423–442 (2001)CrossRefGoogle Scholar
  91. 91.
    Yang, Y., Kreipl, S., Pinedo, M.: Heuristics for minimizing total weighted tardiness in flexible flow shops. J. Scheduling 3(2), 89–108 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Helena R. Lourenço
    • 1
  • Olivier C. Martin
    • 2
  • Thomas Stützle
    • 3
  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.Université Paris-SudOrsayFrance
  3. 3.IRIDIA, Université Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations