A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty

  • Brahim Hnich
  • Roberto Rossi
  • S. Armagan Tarim
  • Steven Prestwich
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 45)

Abstract

In this survey, we focus on problems of decision making under uncertainty. First, we clarify the meaning of the word “uncertainty” and we describe the general structure of problems that fall into this class. Second, we provide a list of problems from the Constraint Programming, Artificial Intelligence, and Operations Research literatures in which uncertainty plays a role. Third, we survey existing modeling frameworks that provide facilities for handling uncertainty. A number of general purpose and specialized hybrid solution methods are surveyed, which deal with the problems in the list provided. These approaches are categorized into three main classes: stochastic reasoning-based, reformulation-based, and sample-based. Finally, we provide a classification for other related approaches and frameworks in the literature.

References

  1. 1.
    Apt K (2003) Principles of constraint programming. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  2. 2.
    Balafoutis T, Stergiou K (2006) Algorithms for stochastic csps. In: Benhamou F (ed) Principles and practice of constraint programming, CP 2006, Proceedings. Lecture notes in computer science, vol 4204. Springer, Heidelberg, pp 44–58Google Scholar
  3. 3.
    Beck JC, Wilson N (2007) Proactive algorithms for job shop scheduling with probabilistic durations. J Artif Intell Res 28:183–232MATHMathSciNetGoogle Scholar
  4. 4.
    Bellman RE (1957) Dynamic Programming. Princeton University Press, PrincetonMATHGoogle Scholar
  5. 5.
    Benoist T, Bourreau E, Caseau Y, Rottembourg B (2001) Towards stochastic constraint programming: a study of online multi-choice knapsack with deadlines. In: Walsh T (ed) Principles and practice of constraint programming, CP 2001, Proceedings. Lecture notes in computer science, vol 2239. Springer, Heidelberg, pp 61–76Google Scholar
  6. 6.
    Bent R, Van Hentenryck P (2004) Regrets only! online stochastic optimization under time constraints. In: Proceedings of the nineteenth national conference on artificial intelligence, sixteenth conference on innovative applications of artificial intelligence, San Jose, California, 25–29 July 2004, pp 501–506Google Scholar
  7. 7.
    Bent R, Katriel I, Van Hentenryck P (2005) Sub-optimality approximations. In: van Beek P (ed) Principles and practice of constraint programming- CP 2005. 11th International Conference, Sitges, Spain, 1–5 October 2005. Lecture notes in computer science, vol 3709. Springer, Heidelberg, pp 122–136Google Scholar
  8. 8.
    Berman O, Wang J, Sapna KP (2005) Optimal management of cross-trained workers in services with negligible switching costs. Eur J Oper Res 167(2):349–369MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bertsekas DP (1995) Dynamic programming and optimal control. Athena Scientific, BelmontMATHGoogle Scholar
  10. 10.
    Bianchi L, Dorigo M, Gambardella L, Gutjahr W (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8(2):239–287MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer Verlag, New YorkMATHGoogle Scholar
  12. 12.
    Bistarelli S, Montanari U, Rossi F (1995) Constraint solving over semirings. In: Proceedings of the fourteenth international joint conference on artificial intelligence, IJCAI ’95, pp 624–630Google Scholar
  13. 13.
    Bordeaux L, Samulowitz H (2007) On the stochastic constraint satisfaction framework. In: SAC ’07: Proceedings of the 2007 ACM symposium on applied computing, New York, pp 316–320Google Scholar
  14. 14.
    Brown KN, Miguel I (2006) Uncertainty and change. In: Rossi F, van Beek P, Walsh T (eds) Handbook of constraint programming, chapter 21. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Charnes A, Cooper WW (1963) Deterministic equivalents for optimizing and satisficing under chance constraints. Oper Res 11(1):18–39MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Comm ACM 5(7):394–397MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3):201–215MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks. In: Proceedings of the 7th national conference on artificial intelligence, AAAI ’88, pp 37–42Google Scholar
  19. 19.
    Fargier H, Lang J, Martin-Clouaire R, Schiex T (1995) A constraint satisfaction framework for decision under uncertainty. In: UAI ’95: Proceedings of the eleventh annual conference on uncertainty in artificial intelligence, 18–20 August 1995, Montreal, Quebec, Canada, pp 167–174Google Scholar
  20. 20.
    Freuder EC (1989) Partial constraint satisfaction. In: Proceedings of the eleventh international joint conference on artificial intelligence, IJCAI ’89. Morgan Kaufmann, San Francisco, pp 278–283Google Scholar
  21. 21.
    Freuder EC, Hubbe PD (1995) Extracting constraint satisfaction subproblems. In: Proceedings of the fourteenth international joint conference on artificial intelligence, IJCAI ’95, Montral, Qubec, Canada, 20–25 August 1995. Morgan Kaufmann, San Francisco, pp 548–557Google Scholar
  22. 22.
    Freuder EC, Wallace RJ (1992) Partial constraint satisfaction. Artif Intell 58(1–3):21–70CrossRefMathSciNetGoogle Scholar
  23. 23.
    Garey MR, Johnson DS (1979) Computer and intractability. a guide to the theory of NP-completeness. Bell Laboratories, Murray Hill, New JerseyGoogle Scholar
  24. 24.
    Gomez FJ, Schmidhuber J, Miikkulainen R (2006) Efficient non-linear control through neuroevolution. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Machine learning: ECML 2006. 17th European conference on machine learning, Berlin, Germany, 18–22 September 2006 Proceedings. Lecture notes in computer science, vol 4212. Springer, Heidelberg, pp 654–662Google Scholar
  25. 25.
    Gosavi A (2003) Simulation-based optimization: parametric optimization techniques and reinforcement learning. Kluwer, NorwellMATHGoogle Scholar
  26. 26.
    Hebrard E, Hnich B, Walsh T (2004) Super solutions in constraint programming. In: Régin J-C, Rueher M (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. First international conference, CPAIOR 2004, Nice, France, 20–22 April 2004, Proceedings. Lecture notes in computer science, vol 3011. Springer, Heidelberg, pp 157–172Google Scholar
  27. 27.
    Van Hentenryck P, Bent R, Vergados Y (2006) Online stochastic reservation systems. In: Beck JC, Smith BM (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Third international conference, CPAIOR 2006, Cork, Ireland, 31 May–2 June 2006, Proceedings. Lecture notes in computer science, vol 3990. Springer, Heidelberg, pp 212–227Google Scholar
  28. 28.
    Van Hentenryck P, Michel L, Perron L, Régin J-C Constraint programming in opl. In: Nadathur G (ed) PPDP’99: Proceedings of the international conference on principles and practice of declarative programming. Lecture notes in computer science, vol 1702. 29 September–1 October 1999, pp 98–116Google Scholar
  29. 29.
    Hewahi NM (2005) Engineering industry controllers using neuroevolution. AI EDAM 19(1):49–57Google Scholar
  30. 30.
    Hnich B, Rossi R, Tarim SA, Prestwich SD (2009) Synthesizing filtering algorithms for global chance-constraints. In: Principles and practice of constraint programming, proceedings, CP 2009, Proceedings. Lecture notes in computer science, vol 5732. Springer, Heidelberg, pp 439–453Google Scholar
  31. 31.
    Jeffreys H (1961) Theory of probability. Clarendon Press, Oxford, UKMATHGoogle Scholar
  32. 32.
    Kall P, Wallace SW (1994) Stochastic programming. Wiley, ChichesterMATHGoogle Scholar
  33. 33.
    Katriel I, Kenyon-Mathieu C, Upfal E (2007) Commitment under uncertainty: two-stage stochastic matching problems. In: Arge L, Cachin C, Jurdzinski T, Tarlecki A (eds) Automata, languages and programming. 34th international colloquium, ICALP 2007, Wroclaw, Poland, 9–13 July 2007, Proceedings. Lecture notes in computer science, vol 4596. Springer, Heidelberg, pp 171–182Google Scholar
  34. 34.
    Kleywegt AJ, Shapiro A, T Homem-De-Mello (2001) The sample average approximation method for stochastic discrete optimization. SIAM J Optim 12(2):479–502MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Littman ML, Goldsmith J, Mundhenk M (1998) The computational complexity of probabilistic planning. J Artif Intell Res 9:1–36MATHMathSciNetGoogle Scholar
  36. 36.
    Littman ML, Majercik SM, Pitassi T (2001) Stochastic boolean satisfiability. J Automat Reas 27(3):251–296MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Liu B (1997) Dependent-chance programming: a class of stochastic optimization. Comput Math Appl 34:89–104MATHCrossRefGoogle Scholar
  38. 38.
    Liu B, Iwamura K (1997) Modelling stochastic decision systems using dependent-chance programming. Eur J Oper Res 101:193–203MATHCrossRefGoogle Scholar
  39. 39.
    Lombardi M, Milano M (2006) Stochastic allocation and scheduling for conditional task graphs in mpsocs. In: Benhamou F (ed) CP 2006: principles and practice of constraint programming. 12th international conference, CP 2006, Nantes, France, 25–29 September 2006, Proceedings. Lecture notes in computer science, vol 4204. Springer, Heidelberg, pp 299–313Google Scholar
  40. 40.
    Lombardi M, Milano M (2007) Scheduling conditional task graphs. In: Bessiere C (ed) CP 2007: principles and practice of constraint programming. 13th international conference, CP 2007, Providence, RI, USA, 23–27 September 2007, Proceedings. Lecture notes in computer science, vol 4741. Springer, Heidelberg, pp 468–482Google Scholar
  41. 41.
    Majercik SM (2000) Planning under uncertainty via stochastic satisfiability. PhD thesis, Durham, NC, USA. Supervisor-Littman, Michael LGoogle Scholar
  42. 42.
    Majercik SM (2007) Appssat: approximate probabilistic planning using stochastic satisfiability. Int J Approx Reason 45(2):402–419MATHCrossRefGoogle Scholar
  43. 43.
    Majercik SM (2009) Stochastic boolean satisfiability. In: Frontiers in artificial intelligence and applications, vol 185, chapter 27. IOS Press, Amsterdam, pp 887–925Google Scholar
  44. 44.
    Majercik SM, Boots B (2005) Dc-ssat: a divide-and-conquer approach to solving stochastic satisfiability problems efficiently. In: Veloso MM, Kambhampati S (eds) Proceedings of the twentieth national conference on artificial intelligence and the seventeenth innovative applications of artificial intelligence conference, 9–13 July 2005, Pittsburgh, Pennsylvania, USA. AAAI Press/The MIT Press, Cambridge, MA, pp 416–422Google Scholar
  45. 45.
    Majercik SM, Littman ML (1998) Maxplan: a new approach to probabilistic planning. In: Proceedings of the fourth international conference on artificial intelligence planning systems, Pittsburgh, Pennsylvania, USA. AAAI Press, pp 86–93Google Scholar
  46. 46.
    Majercik SM, Littman ML (2003) Contingent planning under uncertainty via stochastic satisfiability. Artif Intell 147(1–2):119–162MATHMathSciNetGoogle Scholar
  47. 47.
    Michel L, Van Hentenryck P (2004) Iterative relaxations for iterative flattening in cumulative scheduling. In: Zilberstein S, Koehler J, Koenig S (eds) ICAPS 2004: proceedings of the fourteenth international conference on automated planning and scheduling, 3–7 June 2004, Whistler, British Columbia, Canada. AAAI Press, CA, USA, pp 200–208Google Scholar
  48. 48.
    Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artif Intell 58(1–3):161–205MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality (Wiley Series in Probability and Statistics). Wiley-Interscience, New YorkMATHGoogle Scholar
  50. 50.
    Prestwich SD, Tarim A, Rossi R, Hnich B (2008) A cultural algorithm for pomdps from stochastic inventory control. In: Blesa MJ, Blum C, Cotta C, Fernández AJ, Gallardo JE, Roli A, Sampels M (eds) Hybrid metaheuristics. 5th International Workshop, HM 2008, Málaga, Spain, 8–9 October 2008. Proceedings. Lecture notes in computer science, vol 5296. Springer, pp 16–28Google Scholar
  51. 51.
    Prestwich SD, Tarim A, Rossi R, Hnich B (2008) A steady-state genetic algorithm with resampling for noisy inventory control. In: Rudolph G, Jansen T, Lucas SM, Poloni C, Beume N (eds) PPSN X: parallel problem solving from nature. 10th international conference, Dortmund, Germany, September 13–17, 2008, Proceedings. Lecture notes in computer science, vol 5199. Springer, pp 559–568Google Scholar
  52. 52.
    Prestwich SD, Tarim SA, Hnich B (2006) Template design under demand uncertainty by integer linear local search. Int J Prod Res 44(22):4915–4928MATHCrossRefGoogle Scholar
  53. 53.
    Prestwich SD, Tarim SA, Rossi R, Hnich B (2009) Evolving parameterised policies for stochastic constraint programming. In: Principles and practice of constraint programming, CP 2009, Proceedings. Lecture notes in computer science, vol 5732. Springer, pp 684–691Google Scholar
  54. 54.
    Prestwich SD, Tarim SA, Rossi R, Hnich B (2009) Neuroevolutionary inventory control in multi-echelon systems. In: 1st international conference on algorithmic decision theory, Lecture notes in computer science, vol 5783. Springer, pp 402–413Google Scholar
  55. 55.
    Proll L, Smith B (1998) Integer linear programming and constraint programming approaches to a template design problem. INFORMS J Comput 10(3):265–275MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Rossi R, Tarim SA, Hnich B, Prestwich SD (2007) Replenishment planning for stochastic inventory systems with shortage cost. In: Van Hentenryck P, Wolsey LA (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. 4th International Conference, CPAIOR 2007, Brussels, Belgium, 23–26 May 2007, Proceedings. Lecture notes in computer science, vol 4510. Springer Verlag, pp 229–243Google Scholar
  57. 57.
    Rossi R, Tarim SA, Hnich B, Prestwich SD (2008) Cost-based domain filtering for stochastic constraint programming. In: Stuckey PJ (ed) Principles and practice of constraint programming. 14th international conference, CP 2008, Sydney, Australia, 14–18 September 2008. Proceedings Lecture notes in computer science, vol 5202. Springer, pp 235–250Google Scholar
  58. 58.
    Rossi R, Tarim SA, Hnich B, Prestwich SD (2008) A global chance-constraint for stochastic inventory systems under service level constraints. Constraints 13(4):490–517MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Rossi R, Tarim SA, Hnich B, Prestwich SD, Guran C (2009) A note on liu-iwamura’s dependent-chance programming. Eur J Oper Res 198(3):983–986MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Rossi R, Tarim SA, Hnich B, Prestwich SD, Karacaer S (2008) Scheduling internal audit activities: a stochastic combinatorial optimization problem. J Comb OptimGoogle Scholar
  61. 61.
    Rummery GA, Niranjan M (1994) On-line q-learning using connectionist systems. Technical report, CUED/F-INFENG/TR 166, Cambridge UniversityGoogle Scholar
  62. 62.
    Sahinidis NV (2004) Optimization under uncertainty: State-of-the-art and opportunities. Comput Chem Eng 28:971–983CrossRefGoogle Scholar
  63. 63.
    Schiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the fourteenth international joint conference on artificial intelligence, IJCAI ’95. Morgan Kaufmann, San Francisco, pp 631–639Google Scholar
  64. 64.
    Stanley KO, Miikkulainen R (2002) Evolving neural network through augmenting topologies. Evol Comput 10(2):99–127CrossRefGoogle Scholar
  65. 65.
    Stein ML (1987) Large sample properties of simulation using latin hypercube sampling. Technometrics 29:143–151MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeGoogle Scholar
  67. 67.
    Tarim SA, Hnich B, Prestwich SD, Rossi R (2008) Finding reliable solution: event-driven probabilistic constraint programming. Ann Oper Res 171(1):77–99CrossRefMathSciNetGoogle Scholar
  68. 68.
    Tarim SA, Hnich B, Rossi R, Prestwich SD (2009) Cost-based filtering techniques for stochastic inventory control under service level constraints. Constraints 14(2):137–176MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Tarim SA, Kingsman BG (2004) The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. Int J Prod Econ 88:105–119CrossRefGoogle Scholar
  70. 70.
    Tarim SA, Kingsman BG (2006) Modelling and computing (R n,S n) policies for inventory systems with non-stationary stochastic demand. Eur J Oper Res 174:581–599MATHCrossRefGoogle Scholar
  71. 71.
    Tarim SA, Manandhar S, Walsh T (2006) Stochastic constraint programming: a scenario-based approach. Constraints 11(1):53–80MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Tarim SA, Miguel I (2005) A hybrid benders’ decomposition method for solving stochastic constraint programs with linear recourse. In: Hnich B, Carlsson M, Fages F, Rossi F (eds) Recent advances in constraints. Joint ERCIM/CoLogNET international workshop on constraint solving and constraint logic programming, CSCLP 2005, Uppsala, Sweden, June 20–22, 2005, revised selected and invited papers, Lecture notes in computer science, vol 3978. Springer, pp 133–148Google Scholar
  73. 73.
    Tarim SA, Smith B (2008) Constraint programming for computing non-stationary (R,S) inventory policies. Eur J Oper Res 189:1004–1021MATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Terekhov D, Beck JC (2008) A constraint programming approach for solving a queueing control problem. J Artif Intell Res 32:123–167MATHMathSciNetGoogle Scholar
  75. 75.
    Terekhov D, Beck JC (2007) Solving a stochastic queueing control problem with constraint programming. In: Van Hentenryck P, Wolsey LA (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. 4th international conference, CPAIOR 2007, Brussels, Belgium, May 23–26, 2007, Proceedings. Lecture notes in computer science, vol 4510. Springer, Heidelberg, pp 303–317Google Scholar
  76. 76.
    Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: a survey. Constraints 10(3):253–281MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Walsh T (2000) Sat v csp. In: Dechter R (ed) Principles and practice of constraint programming, CP 2000, Proceedings. Lecture notes in computer science, vol 1894. Springer, Heidelberg, pp 441–456Google Scholar
  78. 78.
    Walsh T (2002) Stochastic constraint programming. In: van Harmelen F (ed) European conference on artificial intelligence, ECAI’2002, Proceedings. IOS Press, Amsterdam, pp 111–115Google Scholar
  79. 79.
    Zhuang Y, Majercik SM Walkssat: an approach to solving large stochastic satisfiability problems with limited time. Technical reportGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2011

Authors and Affiliations

  • Brahim Hnich
    • 1
  • Roberto Rossi
  • S. Armagan Tarim
  • Steven Prestwich
  1. 1.Faculty of computer scienceIzmir University of EconomicsIzmirTurkey

Personalised recommendations