Perspectives of Micro and Nanofabrication of Carbon for Electrochemical and Microfluidic Applications

  • R. Martinez-DuarteEmail author
  • G. Turon Teixidor
  • P. P. Mukherjee
  • Q. Kang
  • M. J. Madou


This chapter focuses on glass-like carbons, their method of micro and nanofabrication and their electrochemical and microfluidic applications. At first, the general properties of this material are exposed, followed by its advantages over other forms of carbon and over other materials. After an overview of the carbonization process of organic polymers we delve into the history of glass-like carbon. The bulk of the chapter deals with different fabrication tools and techniques to pattern polymers. It is shown that when it comes to carbon patterning, it is significantly easier and more convenient to shape an organic polymer and carbonize it than to machine carbon directly. Therefore the quality, dimensions and complexity of the final carbon part greatly depend on the polymer structure acting as a precursor. Current fabrication technologies allow for the patterning of polymers in a wide range of dimensions and with a great variety of tools. Even though several fabrication techniques could be employed such as casting, stamping or even Computer Numerical Controlled (CNC) machining, the focus of this chapter is on photolithography, given its precise control over the fabrication process and its reproducibility. Next Generation Lithography (NGL) tools are also covered as a viable way to achieve nanometer-sized carbon features. These tools include electron beam (e-beam), Focused-ion beam (FIB), Nano Imprint Lithography (NIL) and Step-and-Flash Imprint Lithography (SFIL). At last, the use of glass-like carbon in three applications, related to microfluidics and electrochemistry, is discussed: Dielectrophoresis, Electrochemical sensors, and Fuel Cells. It is exposed how in these applications glass-like carbon offers an advantage over other materials.


Carbon Glass-like carbon Carbon MEMS SU-8 Photo-lithography Electron-beam Focused ion beam Nanoimprint lithography Microfluidics Dielectrophoresis Electrochemistry Nanoelectrodes Fractal electrodes Fuel cells 


  1. 1.
    Ferchault de Reaumur R (1722) L’art de convertir le fer forge en acier, et l'art d'adoucir le fer fondu, ou de faire des ouvrages de fer fondu aussi finis que le fer forge. Available from
  2. 2.
    Lavoisier A (1789) Traite Elementaire de Chimie. Available from
  3. 3.
    Shevlin PB (1972) Formation of atomic carbon in the decomposition of 5-tetra-zolyldiazonium chloride. J. Am. Chem. Soc. 94:1379–1380.CrossRefGoogle Scholar
  4. 4.
    Dewar MJS, Nelson DJ, Shevlin PB, and Biesiada KA (1981) Experimental and theoretical investigation of the mechanism of deoxygenation of carbonyl compounds by atomic carbon. J. Am. Chem. Soc. 103:2802–2807.CrossRefGoogle Scholar
  5. 5.
    Sladkov AM, Kasatochkin VI, Kudryavstev YP, and Korshak VV (1968) Synthesis and properties of valuable polymers of carbon. Russ. Chem. Bull. 17:2560–2566.CrossRefGoogle Scholar
  6. 6.
    Sergushin IP, Kudryavstev YP, Elizen VM et al. (1977) X-ray Electron and X-ray spectral study of Carbyne. J. Struct. Chem. 18:698–700.Google Scholar
  7. 7.
    Whittaker AG (1978) Carbon: A new view of its high-temperature behavior. Science. 200:763–764.CrossRefGoogle Scholar
  8. 8.
    Smith PPK and Buseck PR (1982) Carbyne forms of carbon: Do they exist? Science 216:984–986.CrossRefGoogle Scholar
  9. 9.
    Whittaker AG (1985) Carbyne forms of carbon: Evidence for their existence. Science 229:485–486.CrossRefGoogle Scholar
  10. 10.
    Lagow RJ, Kampa JJ, Wei H et al. (1995) Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 267:362–367.CrossRefGoogle Scholar
  11. 11.
    Baughman RH (2006) Chemistry: Dangerously seeking linear carbon. Science. 312:1009–1010.CrossRefGoogle Scholar
  12. 12.
    Frondel C and Martin UB (1967) Lonsdaleite, a Hexagonal polymorph of diamond. Nature. 214:587–589.CrossRefGoogle Scholar
  13. 13.
    Bundy FP and Kasper JS (1967) Hexagonal diamond – a new form of carbon. J. Chem. Phys. 46:3437–3446.CrossRefGoogle Scholar
  14. 14.
    Kroto HW, Heath JR, O'Brien SC, Curl RF, and Smalley RE (1985) C60: Buckminsterfullerene. Nature. 318:162–163.CrossRefGoogle Scholar
  15. 15.
    Novoselov KS, Geim AK, Morozov SV et al. (2004) Electric field effect in atomically thin carbon films. Science. 306:666–669.CrossRefGoogle Scholar
  16. 16.
    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, and Roth S (2007) The structrue of suspended graphene sheets. Nature. 446:60–63.CrossRefGoogle Scholar
  17. 17.
    Geim AK and Kim P (2008) Carbon wonderland. Scientific American. 298:68–75.Google Scholar
  18. 18.
    Rode AV, Gamalay EG, and Luther-Davies B (2000) Formation of cluster-assembled carbon nano-foam by high repetition-rate laser ablation. Appl. Phys. A. 70:135–144.CrossRefGoogle Scholar
  19. 19.
    Rode AV, Gamalay E, and Luther-Davies B (2002) Electronic and Magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation. Appl. Surf. Sci. 197:644–649.CrossRefGoogle Scholar
  20. 20.
    Rode AV, Gamalay E, Christy AG et al. (2004) Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B. 70:054407-1-054407-9.CrossRefGoogle Scholar
  21. 21.
    Rode AV, Gamalay E, Christy AG et al. (2005) Strong paramagnetism and possible ferromagnetis in pure carbon nanofoam produced by laser ablation. J. Magn. Magn. Mater. 290–291:298–301.CrossRefGoogle Scholar
  22. 22.
    Sullivan JP, Friedmann TA, and Hjort K (2001) Diamond and amorphous carbon MEMS. MRS Bulletin. April:309–311.CrossRefGoogle Scholar
  23. 23.
    Robertson J (2002) Diamond-like amorphous carbon. Mat. Sci. Eng. R. 37:129–281.CrossRefGoogle Scholar
  24. 24.
    Hauser JJ (1977) Electrical, structural and optical properties of amorphous carbon. J. Non-Cryst. Solids. 23:21–41.CrossRefGoogle Scholar
  25. 25.
    Andersson L (1981) A review of recent work on hard i-C films. Thin Solid Films. 86:193–200.CrossRefGoogle Scholar
  26. 26.
    Robertson J (1986) Amorphous carbon. Adv. Phys. 35:317–375.CrossRefGoogle Scholar
  27. 27.
    Robertson J (1991) Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 21:199–333.CrossRefGoogle Scholar
  28. 28.
    Fitzer E, Kochling KH, Boehm HP, and Marsh H (1995) Recommended terminology for the description of carbon as a solid. Pure Appl. Chem. 67:473–506.CrossRefGoogle Scholar
  29. 29.
    Anderson PW (1958) Abscence of diffusion in certain random lattices. Phys. Rev. 109:1492–1505.CrossRefGoogle Scholar
  30. 30.
    Dobbs HS (1974) Vitreous Carbon and the brittle fracture of amorphous solids. J. Phys. D: Appl. Phys. 7:24–34.CrossRefGoogle Scholar
  31. 31.
    Bragg RH and Hammond ML (1965) X-ray study of pyrolytic graphites and glassy carbons. Carbon. 3:340–340.CrossRefGoogle Scholar
  32. 32.
    Rothwell WS (1968) Small-angle x-ray scattering from glassy carbon. J. Appl. Phys. 39:1840–1845.CrossRefGoogle Scholar
  33. 33.
    McFeely SP, Kowalczyk SP, Ley L, Cavell RG, Pollak RA, and Shirley DA (1974) X-ray photoemission studies of diamond, graphite, and glassy carbon valence bands. Phys. Rev. B. 9:5268–5278.CrossRefGoogle Scholar
  34. 34.
    Nishikawa K, Fukuyama K, and Nishizawa T (1998) Structure change of glass-like carbon with heat treatment, studied by small angle x-ray scattering: i. glass-like carbon prepared from phenolic resin. Jpn. J. Appl. Phys. 37:6486–6491.CrossRefGoogle Scholar
  35. 35.
    Fukuyama K, Nishizawa T, and Nishikawa K (2001) Investigation of the pore structure in glass-like carbon prepared from furan resin. Carbon. 39:2017–2021.CrossRefGoogle Scholar
  36. 36.
    Iwashita N, Park CR, Fujimoto H, Shiraishi M, and Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon. 42:701–714.CrossRefGoogle Scholar
  37. 37.
    Dekanski A, Stevanovic J, Stevanovic R, Nikolic BZ, and Jovanovic VM (2001) Glassy carbon electrodes: I. Characterization and electrochemical activation. Carbon 39:1195–1205.CrossRefGoogle Scholar
  38. 38.
    Oberlin A and Oberlin M (1983) Graphitizability of carbonaceous materials as studied by TEM and X-ray diffraction. J. Microsc. 132:353–363.CrossRefGoogle Scholar
  39. 39.
    Yamada S and Sato H (1962) Some physical properties of glassy carbon. Nature 193:261–262.CrossRefGoogle Scholar
  40. 40.
    Lewis JC, Redfern B, and Cowlard FC (1963) Vitreous carbon as a crucible material for semiconductors. Sol. State Electron. 6:251–254.CrossRefGoogle Scholar
  41. 41.
    Cowlard FC and Lewis JC (1967) Vitreous carbon – a new form of carbon. J. Mater. Sci. 2:507–512.CrossRefGoogle Scholar
  42. 42.
    Cahn W and Harris B (1969) Newer forms of carbon and their uses. Nature. 221:132–141.CrossRefGoogle Scholar
  43. 43.
    Halpin MK and Jenkins GM (1969) Interaction of glassy carbon with alkali metal vapours. Proc. R. Soc. Lond. A. 313:421–431.CrossRefGoogle Scholar
  44. 44.
    Jenkins GM and Kawamura K (1976) Polymeric Carbon – Carbon Fibre, Glass and Char. Cambridge University Press, London, New York.Google Scholar
  45. 45.
    Wang C, Jia G, Taherabadi LH, and Madou MJ (2005) A novel method for the fabrication of high-aspect ratio C-MEMS structures. J. MEMS. 14:348–358.CrossRefGoogle Scholar
  46. 46.
    Jenkins GM, Kawamura K, and Ban LL (1972) Formation and structure of polymeric carbons. Proc. R. Soc. Lond. A. 327:501–517.CrossRefGoogle Scholar
  47. 47.
    Kakinoki J (1965) A model for the structure of “glassy carbon”. Acta. Cryst. 18:578.CrossRefGoogle Scholar
  48. 48.
    Jenkins GM and Kawamura K (1971) Structure of glassy carbon. Nature. 231:175–176.CrossRefGoogle Scholar
  49. 49.
    Pesin LA (2002) Structure and Properties of glass-like carbon. J. Mater. Sci. 37:1–28.CrossRefGoogle Scholar
  50. 50.
    Shiraishi M (1984) Kaitei Tansozairyo Nyumon (Introduction to Carbon Materials). Tanso Zairyo Gakkai 29–33.Google Scholar
  51. 51.
    Fedorov VB, Shorshorov MK, and Khakimova DK (1978) Carbon and its interaction with metals [in Russian]. Metallurgiya, Moscow:119–129.Google Scholar
  52. 52.
    Pesin LA and Baitinger EM (2002) A new structural model of glass-like carbon. Carbon. 40:295–306.CrossRefGoogle Scholar
  53. 53.
    Yoshida A, Kaburagi Y, and Hishiyama Y (1991) Microtexture and magnetoresistance of glass-like carbons. Carbon. 29:1107–1111.CrossRefGoogle Scholar
  54. 54.
    Fitzer E, Schaefer W, and Yamada S (1969) The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon. 7:643.CrossRefGoogle Scholar
  55. 55.
    Vohler O, Reiser P, Martina R, and Ovrehoff D (1970) New forms of Carbon. Angew. Chem. Int. Ed. Engl. 9:414–425.CrossRefGoogle Scholar
  56. 56.
    Kawamura K and Kimura S (1983) Glass-like carbon made from epoxy resin cured with 2, 4, 6-Trinitrophenol. Bull. Chem. Soc. Jpn. 56:2499–2503.CrossRefGoogle Scholar
  57. 57.
    Aggarwal RK, Bhatia G, Bahl OP, and Malik M (1988) Development of glass-like carbon from phenol formaldehyde resins employing monohydric and dihydric phenols. J. Mater. Sci. 23:1677–1684.CrossRefGoogle Scholar
  58. 58.
    Callstrom MR, Neenan TX, McCreery RL, and Alsmeyer DC (1990) Doped glassy carbon materials (DGC): low-temperature synthesis, structure, and catalytic behavior. J. Am. Chem. Soc. 112:4954–4956.CrossRefGoogle Scholar
  59. 59.
    Neenan TX, Callstrom MR, Bachman BJ, McCreery RL, and Alsmeyer DC (1990) Doped glassy carbon materials (DGC): Their synthesis from polymeric precursors and investigation of their properties. Br. Polym. J. 23:171–177.CrossRefGoogle Scholar
  60. 60.
    Hutton HD, Huang W, Alsmeyer DC et al. (1993) Synthesis, characterization, and electrochemical activity of halogen-doped glassy carbon. Chem. Mater. 5:1110–1117.CrossRefGoogle Scholar
  61. 61.
    Schueller OJA, Brittain ST, and Whitesides GM (1997) Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9:477–480.CrossRefGoogle Scholar
  62. 62.
    Shah HV, Brittain ST, Huang Q, Hwu S-, Whitesides GM, and Smith DW (1999) Bis-o-diynylarene (BODA) Derived polynaphthalenes as precursors to glassy carbon microstructures. Chem. Mater. 11:2623–2625.CrossRefGoogle Scholar
  63. 63.
    Hishiyama Y, Igarashi K, Kanaoka I et al. (1997) Graphitization behavior of Kapton-derived carbon film related to structure, microtexture and transport properties. Carbon. 35:657–668.CrossRefGoogle Scholar
  64. 64.
    Kim J, Song X, Kinoshita K, Madou M, and White R (1998) Electrochemical studies of carbon films from pyrolyzed photoresist. J. Electrochem. Soc. 145:2314–2319.CrossRefGoogle Scholar
  65. 65.
    Ranganathan S, McCreery RL, Majji SM, and Madou M (2000) Photoresist-derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 147:277–282.CrossRefGoogle Scholar
  66. 66.
    Singh A, Jayaram J, Madou M, and Akbar S (2002) Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149:E78–E83.CrossRefGoogle Scholar
  67. 67.
    Malladi K, Wang C, and Madou M (2006) Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis. Carbon. 44:2602–2607.CrossRefGoogle Scholar
  68. 68.
    Lee L (1965) Mechanisms of thermal degradation of phenolic condensation polymers. II. Thermal stability and degradation schemes of epoxy resins. J. Polym. Sci: Part A. 3:859–882.Google Scholar
  69. 69.
    Fitzer E and Schafer W (1970) The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon. 8:353–364.CrossRefGoogle Scholar
  70. 70.
    Gac NA, Spokes GN, and Benson SW (1970) Thermal degradation of nadic methyl anhydride-cured epoxy novolac. J Polym Sci A. 8:593–608.CrossRefGoogle Scholar
  71. 71.
    Jenkins GM, Kawamura K, and Ban LL (1972) Formation and structure of polymeric carbons. Proc. R. Soc. Lon. A. 327:501–517.CrossRefGoogle Scholar
  72. 72.
    Lyons AM, Wilkins CW, and Robbins M (1983) Thin pinhole-free Carbon films. Thin Solid Films. 103:333–341.Google Scholar
  73. 73.
    Nakagawa H and Tsuge S (1987) Studies on thermal degradation of epoxy resins by high-resolution pyrolysis-gas chromatography. J. Anal. Appl. Pyrolysis. 12:97–113.CrossRefGoogle Scholar
  74. 74.
    Chen KS and Yeh RZ (1996) Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere. J. Hazard. Mater. 49:105–113.CrossRefGoogle Scholar
  75. 75.
    Beyler CL and Hirschler MM (2002) Thermal decomposition of polymers. In: SFPE Handbook of Fire Protection Engineering.Google Scholar
  76. 76.
    Ma CM, Chen C, Kuan H, and Chang W (2004) Processability, Thermal, Mechanical, and Morphological Properties of Novolac Type-Epoxy Resin-Based Carbon-Carbon Composite. J. Comp. Mater. 38:311–322.CrossRefGoogle Scholar
  77. 77.
    Mehrotra BN, Bragg RH, and Rao AS (1983) Effect of heat treatment temperature (HTT) on density, weight and volume of glass-like carbon (GC). J. Mater. Sci. 18:2671–2678.CrossRefGoogle Scholar
  78. 78.
    Spain IL (1981) The electronic transport properties of graphite, carbons, and related materials. In: Walker Jr. PL and Thrower PA (eds) Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York.Google Scholar
  79. 79.
    Pocard NL, Alsmeyer DC, McCreery RL, Neenan TX, and Callstrom MR (1992) Doped glassy carbon: A new material for electrocatalysis. J. Mater. Chem. 2:771–784.CrossRefGoogle Scholar
  80. 80.
    Weintraub E and Miller LB (1915) Microphone. 1156509.Google Scholar
  81. 81.
    Davidson HW (1962) The properties of G. E. C. impermeable carbon. Nucl. Eng. 7:159–161.Google Scholar
  82. 82.
    Redfern B and Greens N (1963) Bodies and Shapes of Carbonaceous Materials and Processes for their Production. US 3109712.Google Scholar
  83. 83.
    Kotlensky WV and Martens HE (1965) Tensile properties of glassy carbon to 2,900 C. Nature. 206:1246–1247.CrossRefGoogle Scholar
  84. 84.
    Zittel HE and Miller FJ (1965) A Glassy-carbon electrode for voltammetry. Anal. Chem. 37:200–203.CrossRefGoogle Scholar
  85. 85.
    Lewis JB, Murdoch R, and Moul AN (1969) Heat of combustion of vitreous carbon. Nature. 221:1137–1138.CrossRefGoogle Scholar
  86. 86.
    Benson J (1969) Carbon offers advantages as implant material in human body. NASA Technical Brief.Google Scholar
  87. 87.
    Benson J (1971) Elemental carbon as a biomaterial. J. Biomed. Mater. Res. 5:41–47.CrossRefGoogle Scholar
  88. 88.
    Von Fraunhofer JA, L'estrange PR, and Mack AO (1971) Materials science in dental implantation and a promising new material: vitreous carbon. Biomed. Eng. 6:114–118.Google Scholar
  89. 89.
    Hucke EE, Fuys RA, and Craig RG (1973) Glassy Carbon: a potential Dental Implant Material. J. Biomed. Mater. Res. 7:263–274.CrossRefGoogle Scholar
  90. 90.
    Stanitski CL and Mooney V (1973) Osseus attachment to vitreous carbons. J. Biomed. Mater. Res. 7:97–108.CrossRefGoogle Scholar
  91. 91.
    Hobkirk JA (1976) Tissue reactions to implanted vitreous carbon and high purity sintered alumina. J. Oral. Rehabil. 4:355–368.CrossRefGoogle Scholar
  92. 92.
    Haubold A (1977) Carbon in prosthetics. Annals of the New York Academy of Sciences. 283:383–395.CrossRefGoogle Scholar
  93. 93.
    Maropis PS, Molinari JA, Appel BN, and Baumhammers A (1977) Comparative study of vitreous carbon, pyrolytic carbon, pyrolytic graphite/silicon-carbide, and titanium implants in rabbit mandibules. Oral Surg. Oral Med. Oral Pathol. 43:506–512.CrossRefGoogle Scholar
  94. 94.
    Sherman AJ (1978) Bone reaction to orthodontic forces on vitreous carbon dental implants. Am. J. Orthod. 74:79–87.MathSciNetCrossRefGoogle Scholar
  95. 95.
    Jenkins GM and Grigson CJ (1979) The fabrication of artifacts out of glassy carbon and carbon-fiber-reinforced carbon for biomedical applications. J. Biomed. Mater. Res. 13:371–394.CrossRefGoogle Scholar
  96. 96.
    Williams MW (1972) Optical properties of glassy carbon from 0 to 82 eV. J. Appl. Phys. 43:3460–3463.CrossRefGoogle Scholar
  97. 97.
    Taylor RJ and Humffray AA (1973) Electrochemical studies on glassy carbon electrodes I. Electron-transfer kinetics. J. Electroanal. Chem. 42:347–354.Google Scholar
  98. 98.
    Nathan MI, Smith JE, and Tu KN (1974) Raman spectra of glassy carbon. J. Appl. Phys. 45:2370–2370.CrossRefGoogle Scholar
  99. 99.
    Blaedel WJ and Jenkins RA (1974) Steady-state voltammetry at glassy carbon electrodes. Anal. Chem. 46:1952–1955.CrossRefGoogle Scholar
  100. 100.
    Taylor RJ and Humffray AA (1975) Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of high pH. J. Electroanal. Chem. 64:63–84.Google Scholar
  101. 101.
    Norvell VE and Mamantov G (1977) Optically transparent vitreous carbon electrode. Anal. Chem. 49:1470–1472.CrossRefGoogle Scholar
  102. 102.
    Shigemitsu T and Matsumoto G (1979) Electrical Properties of glassy-carbon Electrodes. Med. Biol. Eng. Comput. 17:470.CrossRefGoogle Scholar
  103. 103.
    Bourdillon C, Bourgeois JP, and Thomas D (1980) Covalent Linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena. J. Am. Chem. Soc. 102:4231–4235.CrossRefGoogle Scholar
  104. 104.
    Van der Linden, WE and Dieker JW (1980) Glassy carbon as electrode material for electro analytical chemistry. Anal. Chim. Acta. 119:1–24.CrossRefGoogle Scholar
  105. 105.
    Hebert NE, Snyder B, McCreery RL, Kuhr WG, and Brazil SA (2003) Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal. Chem. 75:4265–4271.CrossRefGoogle Scholar
  106. 106.
    McCreery RL (1991) Carbon electrodes: structural effects on electron transfer kinetics. In: Bard AJ (ed) Electroanalytical Chemistry, Marcel Dekker, New York.Google Scholar
  107. 107.
    Kinoshita K (1988) Carbon, Electrochemical and Physicochemical Properties. Wiley-Interscience, New York.Google Scholar
  108. 108.
    Fitzer E, Mueller K, and Schaefer W (1971) The chemistry of the pyrolytic conversion of organic compounds to carbon. In: Walker Jr. PL (ed) Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York.Google Scholar
  109. 109.
    Oberlin A (1989) High-Resolution TEM studies of carbonization and graphitization. In: Thrower PA (ed) Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York.Google Scholar
  110. 110.
    Wang J (1981) Reticulated vitreous carbon – a new versatile electrode material. Electrochim. Acta. 26:1721–1726.CrossRefGoogle Scholar
  111. 111.
    Friedrich JM, Ponce-de-Leon C, Reade GW, and Walsh FC (2004) Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem. 561:203–217.CrossRefGoogle Scholar
  112. 112.
    Schueller OJA, Brittain ST, Marzolin C, and Whitesides GM (1997) Fabrication and Characterization of Glassy Carbon MEMS. Chem. Mater. 9:1399–1406.CrossRefGoogle Scholar
  113. 113.
    Schueller OJA, Brittain ST, and Whitesides GM (1999) Fabrication of glassy carbon microstructures by soft lithography. Sens. Actuators A: Phys. 72:125–139.CrossRefGoogle Scholar
  114. 114.
    Schueller OJA, Brittain S, and Whitesides GM (2000) Fabrication of Carbon Microstructures.6143412.Google Scholar
  115. 115.
    Zhao X, Xia Y, Schueller OJA, Qin D, and Whitesides GM (1998) Fabrication of microstructures using shrinkable polystyrene films. Sens. Actuators A: Phys. 65:209–217.CrossRefGoogle Scholar
  116. 116.
    Kostecki R, Song X, and Kinoshita K (2000) Influence of geometry on the electrochemical response of carbon interdigitated microelectrodes. J. Electrochem. Soc. 147:1878–1881.CrossRefGoogle Scholar
  117. 117.
    Ranganathan S and McCreery RL (2001) Electroanalytical performance of carbon films with near-atomics flatness. Anal. Chem. 73:893–900.CrossRefGoogle Scholar
  118. 118.
    Lorenz H, Despont M, Fahrni M, LaBianca N, Vettiger P, and Renaud P (1997) SU-8: a low-cost negative resist for MEMS. J. Micromech. Microeng. 7:121.CrossRefGoogle Scholar
  119. 119.
    Shaw JM, Gelorme JD, LaBianca NC, Conley WE, and Holmes SJ (1997) Negative photoresists for optical lithography. IBM J. Res. Dev. 41:81–94.CrossRefGoogle Scholar
  120. 120.
    Wang C and Madou M (2005) From MEMS to NEMS with carbon. Biosens. Bioelectron. 20:2181–2187.CrossRefGoogle Scholar
  121. 121.
    Park BY, Taherabadi L, Wang C, Zoval J, and Madou MJ (2005) Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media. J. Electrochem. Soc. 152:J136–J143.CrossRefGoogle Scholar
  122. 122.
    Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, and Dunn B (2004) C-MEMS for the manufacture of 3D microbatteries. Electrochem. Solid-State Lett. 7:A435–A438.CrossRefGoogle Scholar
  123. 123.
    Galobardes F, Wang C, and Madou M (2006) Investigation on the solid electrolyte interface formed on pyrolyzed photoresist carbon anodes for C-MEMS lithium-ion batteries. Diam. Relat. Mater. 15:1930–1934.CrossRefGoogle Scholar
  124. 124.
    Min H, Park BY, Taherabadi L et al. (2008) Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources. 178:795–800.CrossRefGoogle Scholar
  125. 125.
    Teixidor GT, Zaouk RB, Park BY, and Madou MJ (2008) Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J. Power Sources. 183:730–740.CrossRefGoogle Scholar
  126. 126.
    Park BY and Madou MJ (2006) Design, fabrication, and initial testing of a miniature PEM fuel cell with micro-scale pyrolyzed carbon fluidic plates. J. Power Sources. 162:369–379.CrossRefGoogle Scholar
  127. 127.
    Lin P, Park BY, and Madou MJ (2008) Development and characterization of a miniature PEM fuel cell stack with carbon bipolar plates. J. Power Sources. 176:207–214.CrossRefGoogle Scholar
  128. 128.
    Xu H, Malladi K, Wang C, Kulinsky L, Song M, and Madou M (2008) Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 23:1637–1644.CrossRefGoogle Scholar
  129. 129.
    Turon Teixidor G, Gorkin III RA, Tripathi PP et al. (2008) Carbon microelectromechanical systems as a substratum for cell growth. Biomed. Mater. 3:034116.CrossRefGoogle Scholar
  130. 130.
    Park BY and Madou MJ (2005) 3-D electrode designs for flow-through dielectrophoretic systems. Electrophoresis. 26:3745–3757.CrossRefGoogle Scholar
  131. 131.
    Martinez-Duarte R, Rouabah HA, Green NG, Madou M, and Morgan H (2007) Higher Efficiency and Throughput in Particle Separation with 3D Dielectrophoresis with C-MEMS. Proceedings of uTAS 2007: Paris, France, October 7–11 1:826–828.Google Scholar
  132. 132.
    Martinez-Duarte R, Andrade-Roman J, Martinez SO, and Madou MJ (2008) A High Throughput Multi-stage, Multi-frequency Filter and Separation Device based on Carbon Dielectrophoresis. Proceedings of NSTI Nanotech 2008: Boston, MA, June 1–5 3:316–319.Google Scholar
  133. 133.
    Martinez-Duarte R, Cito S, Collado-Arredondo E, Martinez SO, and Madou M (2008) Fluido-dynamic and Electromagnetic Characterization of 3D Carbon Dielectrophoresis with Finite Element Analysis. Proceedings of NSTI Nanotech 2008: Boston, MA, 3:265–268.Google Scholar
  134. 134.
    Martinez-Duarte R, Cito S, Collado-Arredondo E, Martinez SO, and Madou MJ (2008) Fluido-dynamic and electromagnetic characterization of 3D carbon dielectrophoresis with finite element analysis. Sens. Transd. J. 3:25–36.Google Scholar
  135. 135.
    Martinez-Duarte R, Gorkin R, Abi-Samra K, and Madou MJ (2009) The integration of 3D carbon dielectrophoresis on a rotating platform. Proc. Transd. 2009: Denver, CO, June 21–25: 2147–2150.Google Scholar
  136. 136.
    Madou MJ, Park BY, and Paradiso AC (2006) Method and Apparatus for Dielectrophoretic Separation.US 2006/0260944A1.Google Scholar
  137. 137.
    Park BY, Zaouk R, and Madou M (2004) Validation of lithography based on the controlled movement of light-emitting particles. Proc. Soc. Photo Opt. Instrum. Eng. 5374:566–578.Google Scholar
  138. 138.
    Martinez-Duarte R, Madou MJ, Kumar G, and Schroers J (2009) A Novel Method for Amorphous Metal Micromolding using Carbon MEMS. Proc. Transd. 2009.: June 21–25: 188–191.Google Scholar
  139. 139.
    Park BY, Zaouk R, Wang C, and Madou MJ (2007) A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154:P1–P5.CrossRefGoogle Scholar
  140. 140.
    Sharma CS, Kulkarni MM, Sharma A, and Madou M (2009) Synthesis of carbon xerogel particles and fractal-like structures. Chem. Eng. Sci. 64:1536–1543.CrossRefGoogle Scholar
  141. 141.
    Jeong OC and Konishi S (2008) Three-dimensionally combined carbonized polymer sensor and heater. Sens. Actuators. A. 143:97–105.CrossRefGoogle Scholar
  142. 142.
    oleman JN, Khan U, Blau WJ, and Gun’ko YK (2006) Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44:1624–1652.CrossRefGoogle Scholar
  143. 143.
    Hafner JH, Bronikowski MJ, Azamian BR et al. (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296:195–202.CrossRefGoogle Scholar
  144. 144.
    Madou MJ (2009) Manufacturing Techniques for Microfabrication and Nanotechnology. CRC Press, Boca Raton, FL.Google Scholar
  145. 145.
    Metz TE, Savage RN, and Simmons HO (1992) In Situ Control of Photoresist Coating Processes. Semicond. Int. 15:68–69.Google Scholar
  146. 146.
    Thompson LF (1994) An introduction to lithography. In: Thompson LF, Willson CG, and Bowden MJ (eds) Introduction to Microlithography, 2nd edn. American Chemical Society, Washington, DC.Google Scholar
  147. 147.
    Webster RJ (1998) Thin film polymer dielectrics for high-voltage applications under severe environments. Master of Science in Electrical Engineering, Virginia Polytechnic Institute and State University.Google Scholar
  148. 148.
    Chilton JA and Goosey MT (1995) Special Polymers for Electronics and Optoelectronics, Chapman and Hall, London, 351.CrossRefGoogle Scholar
  149. 149.
    Madou M and Florkey J (2000) From Batch to Continuous Manufacturing of Microbiomedical Devices. Chem. Rev. 100:2679–2691.CrossRefGoogle Scholar
  150. 150.
    Reichmanis R, Nalamasu O, Houlihan FM, and Novembre AE (1999) Radiation chemistry of polymeric materials. Polym. Int. 48:1053–1059.CrossRefGoogle Scholar
  151. 151.
    Shaw JM, Gelorme JD, LaBianca NC, Conley WE, and Holmes SJ (1996) Negative photoresists for optical lithography. IBM J. Res. Dev. 41:81–94.CrossRefGoogle Scholar
  152. 152.
    Ito H (1996) Chemical amplification resists: History and development within IBM. IBM J. Res. Dev. 41:69–80.Google Scholar
  153. 153.
    Gelorme JD, Cox RJ, and Gutierrez SAR (1989) Photoresist Composition and Printed Circuit Boards and Packages made therewith. 4882245.Google Scholar
  154. 154.
    Angelo R, Gelorme J, Kucynski J, Lawrence W, Pappas S, and Simpson L (1992) Photocurable epoxy composition with sulfonium salt photoinitiator.5102772.Google Scholar
  155. 155.
    Harris TW (1976) Chemical Milling. Clarendon Press, Oxford.Google Scholar
  156. 156.
    Reznikova EF, Mohr J, and Hein H (2005) Deep Photo-Lithography Characterization of SU-8 Resist Layers. Microsys. Tech. 11:282–291.CrossRefGoogle Scholar
  157. 157.
    Lee SJ, Shi W, Maciel P, and Cha SW (2003) IEEE University/Government/Industry Microelectronics Symposium. Boise, ID, 389–390.CrossRefGoogle Scholar
  158. 158.
    Bertsch A, Lorenz H, and Renaud P (1999) 3D Microfabrication by Combining Microstereolithography and Thick Resist UV Lithography. Sens. Act. A. 73:14–23.CrossRefGoogle Scholar
  159. 159.
    Yang R and Wang W (2005) A numerical and experimental study on gap compensation and wavelength selection in UV-Lithography of Ultra-High Aspect Ratio SU-8 Microstructures. Sens. Act B. 110:279–288.CrossRefGoogle Scholar
  160. 160.
    del Campo A and Greiner C (2007) SU:8 a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 17:R81–R95.CrossRefGoogle Scholar
  161. 161.
    Wolf S and Tauber RN (2000) Silicon Processing for the VLSI Era. Lattice Press, Sunset Beach.Google Scholar
  162. 162.
    Arnone C (1992) The laser-plotter: A versatile lithographic tool for integrated optics and microelectronics. Microelectron. Eng. 17:483–486.CrossRefGoogle Scholar
  163. 163.
    Duffy DC, McDonald JC, Schueller OJA, and Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–4984.CrossRefGoogle Scholar
  164. 164.
    Sure A, Dillon T, Murakowski J, Lin C, Pustai D, and Prather DW (2003) Fabrication and characterization of three-dimensional silicon tapers. Optics Express. 11:3555–3561.CrossRefGoogle Scholar
  165. 165.
    Windt DL and Cirelli RA (1999) Amorphous carbon films for use as both variable-transmission apertures and attenuated phase shift masks for deep ultraviolet lithography. J. Vac. Sci. Technol. B17:930–932.Google Scholar
  166. 166.
    Stauffer JM, Oppliger Y, Regnault P, Baraldi L, and Gale MT (1992) Electron beam writing of continuous resist profiles for optical applications. J. Vac. Sci. Technol. B10:2526.Google Scholar
  167. 167.
    Le Barny P (1987) In: Stroeve P and Franses E (eds) Molecular Engineering of Ultrathin Polymeric Films, Elsevier, New York.Google Scholar
  168. 168.
    Moreau WM (1987) Semiconductor Lithography: Principles, Practices and Materials. Springer, New York.Google Scholar
  169. 169.
    Cataldo A (1999) IBM Uses X-Ray Lithography to Build Prototypes. Semiconductor Business News.Google Scholar
  170. 170.
    Ehrfeld W and Schmidt A (1998) Recent Developments in Deep X-Ray Lithography. J. Vac. Sci. Technol. B16:3526–3534.Google Scholar
  171. 171.
    Rosolen GC (1999) Automatically aligned electron beam lithography on the nanometer scale. Appl. Surf. Sci. 144–145:467–471.CrossRefGoogle Scholar
  172. 172.
    Skjolding LHD, Teixidor GT, Emnéus J, and Montelius L Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures. Microelectronic Engineering. 86:654–656.Google Scholar
  173. 173.
    Editorial (1991) Ion Beam Focused to 8-nm Width. Res. Dev. September:23.Google Scholar
  174. 174.
    Sanchez JL, van Kan JA, Osipowicz T, Springham SV, and Watt F (1998) A high resolution beam scanning system for deep ion beam lithography. Nucl. Instr. Meth. Phys. Res. B136–B38:385–389.CrossRefGoogle Scholar
  175. 175.
    van Kan JA, Sanchez JL, Xu B, Osipowicz T, and Watt F (1999) Micromachining using focused high energy ion beams: Deep ion beam lithography. Nucl. Instr. Meth. Phys. Res. B148:1085–1098.CrossRefGoogle Scholar
  176. 176.
    Seliger RL, Ward JW, Wang V, and Kubena RL (1979) A high intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34:310–312.CrossRefGoogle Scholar
  177. 177.
    Brodie I and Muray JJ (1982) The Physics of Microfabrication. Plenum Press, New York.Google Scholar
  178. 178.
    Youn SW, Takahashi M, Goro H, and Maeda R (2006) A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses. J. Micromech. Microeng. 16:2576–2584.CrossRefGoogle Scholar
  179. 179.
    Youn SW, Takahashi M, Goto H, Kobayashi T, and Maeda R (2006) The effect of heat-treatment conditions on mechanical and morphological properties of a FIB-milled glassy carbon mold with micro patterns. J. Micromech. Microeng. 16:1277–1284.CrossRefGoogle Scholar
  180. 180.
    Youn SW, Takahashi M, Goto H, Maeda R, and Kobayashi N (2006) AFM, SEM and Nano/micro-indentation studies of the FIB-milled glassy carbon surface heat-treated at different conditions. DTIP 2006: April 26–28, 2006.Google Scholar
  181. 181.
    Youn SW, Takahashi M, Goto H, and Maeda R (2006) Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining. Microelectronic Eng. 83:2482–2492.CrossRefGoogle Scholar
  182. 182.
    Youn SW, Takahashi M, Goto H, and Maeda R (2007) Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques. J. Mater. Process. Technol. 187–188:326–330.CrossRefGoogle Scholar
  183. 183.
    Chou SY, Krauss PR, and Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67:3114–3116.CrossRefGoogle Scholar
  184. 184.
    Chou SY, Krauss PR, and Renstrom PJ (1996) Imprint Lithography with 25-Nanometer Resolution. Science 272:85–87.CrossRefGoogle Scholar
  185. 185.
    Colburn M, Johnson S, Stewart M et al. (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE. 3676:379–389.CrossRefGoogle Scholar
  186. 186.
    Reyes DR, Iossifidis D, Auroux P, and Manz A (2002) Micro Total Analysis Systems. 1. Introduction, Theory and Technology. Anal. Chem. 74:2623–2636.CrossRefGoogle Scholar
  187. 187.
    Auroux P, Iossifidis D, Reyes DR, and Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74:2637–2652.CrossRefGoogle Scholar
  188. 188.
    Dittrich PS, Tachikawa K, and Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78:3887–3907.CrossRefGoogle Scholar
  189. 189.
    Janasek D, Franzke J, and Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature. 442:374–380.CrossRefGoogle Scholar
  190. 190.
    Rheea M and Burns MA (2008) Microfluidic assembly blocks. Lab Chip. 8:1365–1373.CrossRefGoogle Scholar
  191. 191.
    Andersson H and van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens. Actuators B: Chem. 92:315–325.CrossRefGoogle Scholar
  192. 192.
    Chung TD and Kim HC (2007) Recent Advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis. 28:4511–4520.CrossRefGoogle Scholar
  193. 193.
    Duffy DC, McDonald JC, Schueller OJA, and Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–4984.CrossRefGoogle Scholar
  194. 194.
    Xia Y and Whitesides GM (1998) Soft lithography. Ann. Rev. Mat. Sci. 28:153–184.CrossRefGoogle Scholar
  195. 195.
    Zhao X, Xia Y, and Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7:1069–1074.CrossRefGoogle Scholar
  196. 196.
    Anderson JR, Chiu DT, Jackman RJ et al. (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 72:3158–3164.CrossRefGoogle Scholar
  197. 197.
    Becker H and Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 21:12–26.CrossRefGoogle Scholar
  198. 198.
    Becker H and Locascio LE (2002) Polymer microfluidic devices. Talanta. 56:267–287.CrossRefGoogle Scholar
  199. 199.
    del Campo A and Arzt E (2008) Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem. Rev. 108:911–945.CrossRefGoogle Scholar
  200. 200.
    Izumi Y, Katoh M, Ohte T, Ohtani S, Kojima A, and Saitoh N (1996) Heating effects on modifying carbon surface by reactive plasma. Appl. Surf. Sci. 100–101:179–183.CrossRefGoogle Scholar
  201. 201.
    Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge.Google Scholar
  202. 202.
    Pohl HA (1958) Some effects of nonuniform fields on dielectrics. Appl. Phys. 29:1182–1188.Google Scholar
  203. 203.
    Sanchis A, Brown AP, Sancho M et al. (2007) Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics. 28:393–401.CrossRefGoogle Scholar
  204. 204.
    Minerick AR, Zhou R, Takhistov P, and Chang H-C (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis. 24:3703–3717.CrossRefGoogle Scholar
  205. 205.
    Hughes MP, Morgan H, and Rixon FJ (2001) Dielectrophoretic manipulation and characterization of herpes simplex virus-1 capsids. Eur. Biophys. J. Biophys. Lett. 30:268–272.CrossRefGoogle Scholar
  206. 206.
    Markx GH and Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb. Technol. 25:161–171.CrossRefGoogle Scholar
  207. 207.
    Crane JS and Pohl HA (1968) A study of living and dead yeast cells using dielectrophoresis. J. Electrochem. Soc. 115:584–586.CrossRefGoogle Scholar
  208. 208.
    Morgan H and Green NG (2003) AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press LTD, Hertfordshire, England.Google Scholar
  209. 209.
    Ramos A, Morgan H, Green NG, and Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D.: Appl. Phys. 31:2338–2353.CrossRefGoogle Scholar
  210. 210.
    Castellanos A, Ramos A, González A, Green NG, and Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D. 36:2584–2597.CrossRefGoogle Scholar
  211. 211.
    Rousselet J, Markx GH, and Pethig R (1998) Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids and Surfaces A: Physiochem. Eng. Aspects. 140:209–216.CrossRefGoogle Scholar
  212. 212.
    Hughes MP, Morgan H, Rixon FJ, Burt JPH, and Pethig R (1998) Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochimica et Biophysica Acta-General Subjects. 1425:119–126.CrossRefGoogle Scholar
  213. 213.
    Becker FF, Wang X-, Huang Y, Pethig R, Vykoukal J, and Gascoyne PRC (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA 92:860–864.CrossRefGoogle Scholar
  214. 214.
    Flanagan LA, Lu J, Wang L et al. (2008) Unique dielectric properties distinguishing stem cells and their differentiated progeny. Stem Cells. 26:656–665.CrossRefGoogle Scholar
  215. 215.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, and Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704.CrossRefGoogle Scholar
  216. 216.
    Srivastava SK, Pullen SA, and Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: Positive ABO blood types. Electrophoresis 29:5033–5046.Google Scholar
  217. 217.
    Cummings EB and Singh AK (2003) Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results. Anal. Chem. 75:4724–4731.CrossRefGoogle Scholar
  218. 218.
    Cummings EB and Singh AK (2000) Dielectrophoretic trapping without embedded electrodes.; September 18–19, 2000 Copyright 2003 SciSearch Plus. 4177:164–173.Google Scholar
  219. 219.
    Lapizco-Encinas BH, Ozuna-Chacón S, and Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and DC electric fields. J. Chromatogr. A 1206:45–51.CrossRefGoogle Scholar
  220. 220.
    Zheng LF, Brody JP, and Burke PJ (2004) Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosens. Bioelectron. 20:606–619.CrossRefGoogle Scholar
  221. 221.
    Tracy NI and Ivory CF (2008) Protein separation using preparative-scale dynamic field gradient focusing. Electrophoresis 29:2820–2827.CrossRefGoogle Scholar
  222. 222.
    Betts WB (1995) The potential of dielectrophoresis for the real-time detection of microorganisms in foods. Trends Food Sci. Technol. 6:51–58.CrossRefGoogle Scholar
  223. 223.
    Klodzinska E and Buszewski B (2009) Electrokinetic detection and characterization of intact microorganisms. Anal. Chem. 81:8–15.CrossRefGoogle Scholar
  224. 224.
    Markx GH, Huang Y, Zhou XF, and Pethig R (1994) Dielectrophoretic characterization and separation of microorganisms. Microbiology. 140:585–591.Google Scholar
  225. 225.
    Suzuki M, Yasukawa T, Shiku H, and Matsue T (2005) Separation of live and dead microorganisms in a micro-fluidic device by dielectrophoresis. Bunseki Kagaku. 54:1189–1195.CrossRefGoogle Scholar
  226. 226.
    Castellarnau M, Errachid A, Madrid C, Juarez A, and Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys. J. 91:3937–3945.CrossRefGoogle Scholar
  227. 227.
    Demierre N, Braschler T, Muller R, and Renaud P (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens. Actuators B: Chem. 132:388–396.CrossRefGoogle Scholar
  228. 228.
    Vahey MD and Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal. Chem. 80:3135–3143.CrossRefGoogle Scholar
  229. 229.
    Fatoyinbo HO, Hoettges KF, and Hughes MP (2008) Rapid-on-chip determination of dielectric properties of biological cells using imaging techniques in a dielectrophoresis dot microsystem. Electrophoresis. 29:3–10.CrossRefGoogle Scholar
  230. 230.
    Gascoyne P and Vykoukal J (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE. 92:22–42.CrossRefGoogle Scholar
  231. 231.
    Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, and Gascoyne PRC (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem. 72:832–839.CrossRefGoogle Scholar
  232. 232.
    Gascoyne PRC, Wang XB, Huang Y, and Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans. Ind. Appl. 33:670–678.CrossRefGoogle Scholar
  233. 233.
    Müller T, Fiedler S, Schnelle T, Ludwig K, Jung H, and Fuhr G (1996) High frequency electric fields for trapping of viruses. Biotechnol. Tech. 10:221–226.CrossRefGoogle Scholar
  234. 234.
    Ermolina I, Milner J, and Morgan H (2006) Dielectrophoretic investigation of plant virus particles: Cow pea mosaic virus and tobacco mosaic virus. Electrophoresis. 27:3939–3948.CrossRefGoogle Scholar
  235. 235.
    Grom F, Kentsch J, Müller T, Schnelle T, and Stelzle M (2006) Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27:1386–1393.CrossRefGoogle Scholar
  236. 236.
    Berman D, Rohr ME, and Safferman RS (1980) Concentration of polio virus in water by molecular filtration. Appl. Environ. Microbiol. 40:426–428.Google Scholar
  237. 237.
    Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 23:2569–2582.CrossRefGoogle Scholar
  238. 238.
    Hughes MP (2002) Nanoelectromechanics in Engineering and Biology. CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
  239. 239.
    Simmons BA, McGraw GJ, Davalos RV, Fiechtner GJ, Fintschenko Y, and Cummings EB (2006) The development of polymeric devices as dielectrophoretic separators and concentrators. MRS Bulletin 31:120–124.CrossRefGoogle Scholar
  240. 240.
    Cummings EB (2003) Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng. Med. Biol. Mag. 22:75–84.CrossRefGoogle Scholar
  241. 241.
    Wang L, Flanagan L, and Lee AP (2007) Side-wall vertical electrodes for lateral field microfluidic applications. J. MEMS. 16:454–461.CrossRefGoogle Scholar
  242. 242.
    Voldman J, Gray M, Toner M, and Schmidt M (2002) A Microfabrication-based Dynamic Array Cytometer. Anal. Chem. 74:3984–3990.CrossRefGoogle Scholar
  243. 243.
    Illiescu C, Xu GL, Samper V, and Tay FEH (2005) Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng. 15:494–500.CrossRefGoogle Scholar
  244. 244.
    Fatoyinbo H, Kamchis D, Whattingham R, Ogin SL, and Hughes M (2005) A high-throughput 3-D composite dielectrophoretic separator. IEEE Trans. Biomed. Eng. 52:1347–1349.CrossRefGoogle Scholar
  245. 245.
    de Paula CC, Garcia Ramos A, da Silva AC, Cocchieri Botelho E, and Rezende MC (2002) Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes. Carbon. 40:787–788.CrossRefGoogle Scholar
  246. 246.
    Iacono ST, Perpall MW, Wapner PG, Hoffman WP, and Smith Jr. DW (2007) Carbonization and thermal expansion of glassy carbon derived from bis-ortho-diynylarenes. Carbon 45:931–935.CrossRefGoogle Scholar
  247. 247.
    Hull R (1999) Properties of Crystalline Silicon. The Institution of Engineering and Technology, London.Google Scholar
  248. 248.
    Anne A, Blanc B, Moiroux J, and Saveant JM (1998) Facile derivatization of glassy carbon surfaces by N-Hydroxysuccinimide esters in view of attaching biomolecules. Langmuir. 14:2368–2371.CrossRefGoogle Scholar
  249. 249.
    Nowall WB, Wipf DO, and Kuhr WG (1998) Localized avidin/biotin derivatization of glassy carbon electrodes using SECM. Anal. Chem. 70:2601–2606.CrossRefGoogle Scholar
  250. 250.
    Fleischmann M, Pons S, Rolison DR, and Schmidt PP (1987) Ultramicroelectrodes. Datatech Systems Inc. Morganton, NC.Google Scholar
  251. 251.
    Hadi M, Rouhollah A, Yousefi M, Taidy F, and Malekfar R (2006) Electrochemical Characterization of a pyrolytic carbon film electrode and the effect of anodization. Electroanalysis 18:787–792.CrossRefGoogle Scholar
  252. 252.
    McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108:2646–2687.CrossRefGoogle Scholar
  253. 253.
    Lawrence NS, Beckett EL, Davis J, and Compton RG (2002) Advances in the voltammetric analysis of small biologically relevant compounds. Anal. Biochem. 303:1–16.CrossRefGoogle Scholar
  254. 254.
    Aoki K and Tanaka M (1989) Time-dependence of diffusion-controlled currents of a soluble redox couple at interdigitated microarray electrodes. J. Electroanal. Chem. 266:11–20.CrossRefGoogle Scholar
  255. 255.
    Niwa O and Tabei H (1994) Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes. Anal. Chem. 66:285–289.CrossRefGoogle Scholar
  256. 256.
    Dam VAT, Olthuis W, and van den Berg A (2007) Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst. 132:365–370.CrossRefGoogle Scholar
  257. 257.
    Bard AJ, Crayston JA, Kittlesen GP, Varco Shea T, and Wrighton MS (1986) Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal. Chem. 58:2321–2331.CrossRefGoogle Scholar
  258. 258.
    Yang X and Zhang G (2005) Diffusion-controlled redox cycling at nanoscale interdigitated electrodes. Proceedings of the COMSOL Multiphysics Conference, Boston MA.Google Scholar
  259. 259.
    Iwasaki Y and Morita M (1995) Electrochemical Measurements with Interdigitated Array Microelectrodes Current Separations. Curr. Sep. 14:2–8.Google Scholar
  260. 260.
    Spegel C, Heiskanen A, Pedersen S, Emneus J, Ruzgas T, and Taboryski R (2008) Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Lab Chip. 8:323–329.CrossRefGoogle Scholar
  261. 261.
    Spegel C, Heiskanen A, Skjolding LHD, and Emneus J (2008) Chip based electroanalytical systems for cell analysis. Electroanalysis 20:680–702.CrossRefGoogle Scholar
  262. 262.
    Tabei H, Takahashi M, Hoshino S, Niwa O, and Horiuchi T (1994) Subfemtomole detection of catecholamine with interdigitated array carbon microelectrodes in HPLC. Anal. Chem. 66:3500–3502.CrossRefGoogle Scholar
  263. 263.
    Fruchter L, Crepy G, and Le Mehaute A (1986) Batteries, identified fractal objects. J. Power Sources. 18:51–62.CrossRefGoogle Scholar
  264. 264.
    Pajkossy T (1991) Electrochemistry at fractal surfaces. J. Electroanal. Chem. 300:1–11.CrossRefGoogle Scholar
  265. 265.
    Whitesides GM and Grzybowski B (2002) Self-assembly at all scales. Science; Science. 295:2418–2421.CrossRefGoogle Scholar
  266. 266.
    Maddison DS (1993) Fractal analysis of polypyrrole deposition. Synth. Met. 57:3544–3549.CrossRefGoogle Scholar
  267. 267.
    Wang C, Zaouk R, and Madou M (2006) Local chemical vapor deposition of carbon nanofibers from photoresist. Carbon 44:3073–3077.CrossRefGoogle Scholar
  268. 268.
    Khan GF and Wernet W (1997) Design of enzyme electrodes for extended use and storage life. Anal. Chem. 69:2682–2687.CrossRefGoogle Scholar
  269. 269.
    de la Guardia M (1995) Biochemical sensors: The state of the art. Microchim. Acta. 120:243–255.CrossRefGoogle Scholar
  270. 270.
    Gorton L (1995) Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis 7:23–45.CrossRefGoogle Scholar
  271. 271.
    Heller A (1990) Electrical wiring of redox enzymes. Acc. Chem. Res. 23:128–134.CrossRefGoogle Scholar
  272. 272.
    Mao F, Mano N, and Heller A (2003) Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels. J. Am. Chem. Soc. 125:4951–4957.CrossRefGoogle Scholar
  273. 273.
    Wang J and Angnes L (1992) Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Anal. Chem. 64:456–459.CrossRefGoogle Scholar
  274. 274.
    Ciriello R, Cataldi T, Centonze D, and Guerrieri A (2000) Permselective behavior of an electrosynthesized, nonconducting thin film of poly(2-naphthol) and its application to enzyme immobilization. Electroanalysis. 12:825–830.CrossRefGoogle Scholar
  275. 275.
    Vielstich W, Lamm A, and Gasteiger H (2003) Handbook of Fuel Cells: Fundamentals, Technology, Applications. John Wiley & Sons, Ltd. Chichester.Google Scholar
  276. 276.
    Tamaki T and Yamaguchi T (2006) High-surface-area three-dimensional biofuel cell electrode using redox-polymer-grafted carbon. Ind. Eng. Chem. Res. 45:3050–3058.CrossRefGoogle Scholar
  277. 277.
    Arechederra RL, Treu BL, and Minteer SD (2007) Development of glycerol/O2 biofuel cell. J. Power Sources. 173:156–161.CrossRefGoogle Scholar
  278. 278.
    Brunel L, Denele J, Servat K et al. (2007) Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun. 9:331–336.CrossRefGoogle Scholar
  279. 279.
    Lim KG and Palmore GTR (2007) Microfluidic biofuel cells: The influence of electrode diffusion layer on performance. Biosens. Bioelectron. 22:941–947.CrossRefGoogle Scholar
  280. 280.
    Report on Basic Research Needs to Assure a Secure Energy Future (2003) U. S. Department of Energy. Available from
  281. 281.
    Thomas EV, Bloom I, Christophersen JP, and Battaglia VS (2008) Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing. J. Power Sources. 184:312–317.CrossRefGoogle Scholar
  282. 282.
    Sakaue E (2005) Micromachining/nanotechnology in direct methanol fuel cell. Digest IEEE Conference on MEMS: Miami Beach, FL, Jan 30–Feb 3 1:600–605.Google Scholar
  283. 283.
    Jankowski AF, Hayes JP, Graff RT, and Morse JD (2002) Micro-fabricated thin film fuel cells for portable power requirements. Materials Research Society Proceedings. San Francisco, CA, April 1–5 730:93–98.Google Scholar
  284. 284.
    Hayase M, Kawase T, and Hatsuzawa T (2004) Miniature 250 μm thick fuel cell with monolithically fabricated silicon eletrodes. Electrochem. Solid-State Lett. 7:A231–A234.CrossRefGoogle Scholar
  285. 285.
    Modroukas D, Modi V, and Frechette LG (2005) Micromachined silicon structures for free-convection PEM fuel cells. J. Micromech. Microeng. 15:S193–S201.CrossRefGoogle Scholar
  286. 286.
    Min KB, Tanaka S, and Esashi M (2002) MEMS-based polymer electrolyte fuel cell. Electrochemistry 70:924–927.Google Scholar
  287. 287.
    Kravitz SH, Apblett CA, Schmidt CF, Beggans MH, and Hecht AM (2002) A silicon micro fuel cell with a porous silicon nitride membrane electrode assembly. Abstracts of the Electrochemical Society Meeting: Salt Lake City, UT, October 20–25 1:708.Google Scholar
  288. 288.
    Kelley SC, Deluga GA, and Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem. Solid-State Lett. 3:407–409.CrossRefGoogle Scholar
  289. 289.
    Lee SJ, Chang-Chien A, Cha SW et al. (2002) Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. J. Power Sources. 112:410–418.CrossRefGoogle Scholar
  290. 290.
    Motokawa S, Mohamedi M, Momma T, Shoji S, and Osaka T (2004) MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (u-DMFC). Electrochem. Commun. 6:562–565.CrossRefGoogle Scholar
  291. 291.
    D'Arrigo G, Spinella C, Arena G, and Lorenti S (2003) Fabrication of miniaturized Si-based electrocatalytic membranes. Mater. Sci. Eng. C. 23:13–18.CrossRefGoogle Scholar
  292. 292.
    Erdler G, Frank M, Lehmann M, Reinecke H, and Muller C (2006) Chip integrated fuel cell. Sensor Actuat. A-Phys. 132:331–336.CrossRefGoogle Scholar
  293. 293.
    Meyers JP and Maynard HL (2002) Design considerations for miniaturized PEM fuel cells. J. Power Sources 109:76–88.CrossRefGoogle Scholar
  294. 294.
    Kuriyama N, Kubota T, Okamura D, Suzuki T, and Sasahara J (2008) Design and fabrication of MEMS-based monolithic fuel cells. Sensor Actuat. A-Phys. 145–146:354–362.CrossRefGoogle Scholar
  295. 295.
    Dyer CK (2002) Fuel cells for portable applications. J. Power Sources 106:31–34.CrossRefGoogle Scholar
  296. 296.
    Park BY and Madou MJ (2006) Design, fabricaion, and initial testing of a miniature PEM fuel cell with micro-scale pyrolyzed carbon fluidic plates. J. Power Sources 162:369–379.CrossRefGoogle Scholar
  297. 297.
    Gottesfeld S and Wilson MS (2000) Polymer electrolyte fuel cells as potential power sources for portable electronic devices. In: Osaka T and Datta M (eds) Energy Storage Systems for Electronics Devices, Gordon and Breach Science Publishers, Singapore.Google Scholar
  298. 298.
    Arico AS, Srinivasan S, and Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161.CrossRefGoogle Scholar
  299. 299.
    Müller J, Frank G, Colbow K, and Wilkinson D (2003) Transport/kinetic limitations and efficiency losses. In: Vielstich W, Gasteiger HA, and Lamm A (eds) Handbook of Fuel Cells, John Wiley and Sons Ltd., England.Google Scholar
  300. 300.
    Neergat M, Friedrich KA, and Stimming U (2003) New material for DMFC MEAs. In: Vielstich W, Gasteiger HA, and Lamm A (eds) Handbook of Fuel Cells, John Wiley and Sons Ltd., England.Google Scholar
  301. 301.
    Narayanan SR, Valdez TI, and Rohatgi N (2003) DMFC system design for portable applications. In: Vielstich W, Gasteiger HA, and Lamm A (eds) Handbook of Fuel Cells, John Wiley and Sons Ltd., England.Google Scholar
  302. 302.
    Lu G and Wang CY (2004) Two-phase microfluidics, heat and mass transport in direct methanol fuel cells. In: Sunden B and Faghri M (eds) Transport Phenomena in Fuel Cells, WIT Press, Boston, MA.Google Scholar
  303. 303.
    Gottesfeld S (2007) Polymer electrolyte and direct methanol fuel cells. In: Bard AJ and Stratman M (eds) Encyclopedia of Electrochemistry, John Wiley and Sons Ltd., Weinheim.Google Scholar
  304. 304.
    Shaffer CE and Wang CY (2009) Performance modeling and cell design for high concentration methanol fuel cells. In: Vielstich W, Yokokawa H, and Gasteiger HA (eds) Advances in Electrocatalysis, Materials, Diagnostics and Durability, John Wiley and Sons Ltd., England.Google Scholar
  305. 305.
    Choban ER, Markoski LJ, Wieckowski A, and Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J. Power Sources. 128:54–60.CrossRefGoogle Scholar
  306. 306.
    Kjeang E, McKechnie J, Sinton D, and Djilali N (2007) Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. J. Power Sources. 168:379–390.CrossRefGoogle Scholar
  307. 307.
    Kjeang E, Djilali N, and Sinton D (2009) Microfluidic fuel cells: A review. J. Power Sources. 186:353–369.CrossRefGoogle Scholar
  308. 308.
    Li A, Chan SH, and Nguyen NT (2007) A laser-micromachined polymeric membraneless fuel cell. J. Micromech. Microeng. 17:1107–1113.CrossRefGoogle Scholar
  309. 309.
    Litster S and Djilali N (2008) Theoretical performance analysis of microstructured air-breathing fuel cells. Electrochem. Solid-State Lett. 11:B1–B5.CrossRefGoogle Scholar
  310. 310.
    Jiang Y, Wang X, Zhong L, and Liu L (2006) Design, fabrication and testing of a silicon-based air-breathing micro direct methanol fuel cell. J. Micromech. Microeng. 16:S233–S239.CrossRefGoogle Scholar
  311. 311.
    Cao J, Zou Z, Huang Q et al. (2008) Planar air-breathing micro-direct methanol fuel cell stacks based on micro-electronic-mechanical-system technology. J. Power Sources. 185:433–438.CrossRefGoogle Scholar
  312. 312.
    Chiao M, Lam K, and Lin L (2006) Micromachined microbial and photosynthethic fuel cells. J. Micromech. Microeng. 16:2547–2553.CrossRefGoogle Scholar
  313. 313.
    Barton SC, Gallaway J, and Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104:4867–4886.CrossRefGoogle Scholar
  314. 314.
    Kerzenmacher S, Ducree J, Zengerle R, and von Stetten F (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources. 182:1–17.CrossRefGoogle Scholar
  315. 315.
    Moriuchi T, Morishima K, and Furukawa Y (2008) Improved power capability with pyrolyzed carbon electrodes in micro direct photosynthetic/metabolic bio-fuel cell. Int. J. Precision Eng. Manuf. 9:23–27.Google Scholar
  316. 316.
    Topcagic S and Minteer SD (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim. Acta. 51:2168–2172.CrossRefGoogle Scholar
  317. 317.
    O’Hayre R, Braithwaite D, Hermann W et al. (2003) Development of portable fuel cell arrays with printed-circuit technology. J. Power Sources. 124:459–472.CrossRefGoogle Scholar
  318. 318.
    More KL and Reeves KS (2005) Microstructural characterization of PEM fuel cell MEAs. DOE Hydrogen Program Annual Merit Review Proceedings: Arlington, VA, May 23–26 1.Google Scholar
  319. 319.
    Gottesfeld S and Zawodzinski TA (1997) Polymer electrolyte fuel cells. In: Tobias C (ed) Advances in Electrochemical Science and Engineering, Wiley and Sons, New York.Google Scholar
  320. 320.
    Eikerling M, Kornyshev AA, and Kulikovsky AA (2007) Physical modeling of cell components, cells and stacks. In: Macdonald DD and Schmuki P (eds) Encyclopedia of Electrochemistry, VCH-Wiley, Weinheim.Google Scholar
  321. 321.
    Eikerling M, Kornyshev AA, and Kulikovsky AA (2006) Water in polymer electrolyte fuel cells: Friend or foe? Phys. Today. 59:38–44.CrossRefGoogle Scholar
  322. 322.
    Debe MK (2003) Novel catalysts, calatyst support and catalysts coated membrane methods. In: Vielstich W, Lamm A, and Gasteiger HA (eds) Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley and Sons Ltd., England.Google Scholar
  323. 323.
    Debe MK, Schmoeckel AK, Vernstrom GD, and Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources. 161:1002–1011.CrossRefGoogle Scholar
  324. 324.
    Mukherjee PP, Sinha PK, and Wang CY (2007) Impact of gas diffusion layer structure and wettability on water management in polymer electrolyte fuel cells. J. Mater. Chem. 17:3053–3089.CrossRefGoogle Scholar
  325. 325.
    Mathias MF, Roth J, Fleming J, and Lehnert W (2003) Diffusion media materials and characterization. In: Lietsich W, Lamm A, and Gasteiger HA (eds) Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley and Sons Ltd., Chicester.Google Scholar
  326. 326.
    Weber AZ and Darling RM (2007) Understanding porous water transport plates in polymer-electrolyte fuel cells. J. Power Sources. 168:191–199.CrossRefGoogle Scholar
  327. 327.
    Wang CY (2004) Fundamental models for fuel cell engineering. Chem. Rev. 104:4727–4766.CrossRefGoogle Scholar
  328. 328.
    Wang CY (2003) Two-phase flow and transport. In: Anonymous (ed) Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley and Sons Ltd., Chicester.Google Scholar
  329. 329.
    Lin P, Park BY, and Madou MJ (2008) Development and characterization of a miniature PEM fuel cell stack with carbon bipolar plates. J. Power Sources. 176:207–214.CrossRefGoogle Scholar
  330. 330.
    Mukherjee PP (2007) Pore-Scale Modeling and Analysis of the Polymer Electrolyte Fuel Cell Catalyst Layer. PhD Dissertation, The Pennsylvania State University.Google Scholar
  331. 331.
    Mukherjee PP and Wang CY (2008) A Catalyst layer Flooding Model for Polymer Electrolyte Fuel Cells. Proceedings of ASME Fuel Cell 2008: Denver, CO, June 16–18 1.Google Scholar
  332. 332.
    Prasher RS, Hu XJ, Chalopin Y et al. (2009) Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102:105901–105904.CrossRefGoogle Scholar
  333. 333.
    Lee SW, Kim B, Chen S, Shao-Horn Y, and Hammond PT (2009) Layer-by-Layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131:671–679.CrossRefGoogle Scholar
  334. 334.
    Mano N, Mao F, and Heller A (2003) Characteristics of a miniature compartment-less Glucose–O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125:6588–6594.CrossRefGoogle Scholar
  335. 335.
    Klotzbach T, Watt M, Ansari Y, and Minteer SD (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J. Membr. Sci. 282:276–283.CrossRefGoogle Scholar
  336. 336.
    Barton SC, Sun Y, Chandra B, White S, and Hone J (2007) Mediated enzyme electrodes with combined micro- and nanoscale supports. Electrochem. Solid-State Lett. 10:B96–B100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. Martinez-Duarte
    • 1
    Email author
  • G. Turon Teixidor
    • 2
  • P. P. Mukherjee
    • 3
  • Q. Kang
    • 3
  • M. J. Madou
    • 2
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations