Phycobiliprotein Biosynthesis in Cyanobacteria: Structure and Function of Enzymes Involved in Post-translational Modification

  • Wendy M. SchluchterEmail author
  • Gaozhong Shen
  • Richard M. Alvey
  • Avijit Biswas
  • Nicolle A. Saunée
  • Shervonda R. Williams
  • Crystal A. Mille
  • Donald A. Bryant
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 675)


Cyanobacterial phycobiliproteins are brilliantly colored due to the presence of covalently attached chromophores called bilins, linear tetrapyrroles derived from heme. For most phycobiliproteins, these post-translational modifications are catalyzed by enzymes called bilin lyases; these enzymes ensure that the appropriate bilins are attached to the correct cysteine residues with the proper stereochemistry on each phycobiliprotein subunit. Phycobiliproteins also contain a unique, post-translational modification, the methylation of a conserved asparagine (Asn) present at β-72, which occurs on the β-subunits of all phycobiliproteins. We have identified and characterized several new families of bilin lyases, which are responsible for attaching PCB to phycobiliproteins as well as the Asn methyl transferase for β-subunits in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. All of the enzymes responsible for synthesis of holo-phycobiliproteins are now known for this cyanobacterium, and a brief discussion of each enzyme family and its role in the biosynthesis of phycobiliproteins is presented here. In addition, the first structure of a bilin lyase has recently been solved (PDB ID: 3BDR). This structure shows that the bilin lyases are most similar to the lipocalin protein structural family, which also includes the bilin-binding protein found in some butterflies.


Synechococcus Elongatus Nostoc Punctiforme Thioether Linkage Nucleomorph Genome Prochlorococcus Marinus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by National Science Foundation grants to W. M. S. (MCB-0133441 and MCB-0843664) and to D. A. B. (MCB-0077586 and MCB-0519743). We would like to thank Farhad Forouhar and John Hunt from Columbia University for preparing the image shown in Fig. 12.6.


  1. Andrade MA, Petosa C, O’Donoghue SI, Müller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309:1–18PubMedCrossRefGoogle Scholar
  2. Apt KE, Metzner S, Grossman AR (2001) The gamma subunits of phycoerythrin from a red alga: position in phycobilisomes and sequence characterization. J Phycol 37:64–70CrossRefGoogle Scholar
  3. Arciero DM, Bryant DA, Glazer AN (1988a) In vitro attachment of bilins to apophycocyanin I: specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343–18349PubMedGoogle Scholar
  4. Arciero DM, Dallas JL, Glazer AN (1988b) In vitro attachment of bilins to apophycocyanin: II: determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct. J Biol Chem 263:18350–18357PubMedGoogle Scholar
  5. Arciero DM, Dallas JL, Glazer AN (1988c) In vitro attachment of bilins to apophycocyanin: III: properties of the phycoerythrobilin adduct. J Biol Chem 263:18358–18363PubMedGoogle Scholar
  6. Betz M (1997) One century of protein crystallography: the phycobiliproteins. Biol Chem 378:167–176PubMedGoogle Scholar
  7. Bishop RE (2000) The bacterial lipocalins. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482:73–83CrossRefGoogle Scholar
  8. Biswas A, Vasquez YM, Dragomani TM, Kronfel ML, Williams SR, Alvey RM, Bryant DA, Schluchter WM (2010) HYPERLINK “” Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 76:2729–2739.PubMedCrossRefGoogle Scholar
  9. Blot N et al (2009) Phycourobilin in Trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem 284:9290–9298PubMedCrossRefGoogle Scholar
  10. Bolte K, Kawach O, Prechtl J, Gruenheit N, Nyalwidhe J, Maier UG (2008) Complementation of a phycocyanin-bilin lyase from Synechocystis sp PCC 6803 with a nucleomorph-encoded open reading frame from the cryptophyte Guillardia theta. Bmc Plant Biol 8Google Scholar
  11. Bryant DA (1992) Puzzles of chloroplast ancestry. Curr Biol 5:240–242.CrossRefGoogle Scholar
  12. Bryant DA, Cohen-Bazire G, Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus: chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129:190–198CrossRefGoogle Scholar
  13. Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The “anchor polypeptide” of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apcE gene. J Biol Chem 266:7239–7247PubMedGoogle Scholar
  14. Charron JBF, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139:2017–2028PubMedCrossRefGoogle Scholar
  15. Clarke S (2002) The methylator meets the terminator. Proc Natl Acad Sci USA 99:1104–1106PubMedCrossRefGoogle Scholar
  16. Cobley JG et al (2002) CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker- polypeptide operon (cpeCDESTR). Mol Microbiol 44:1517–1531PubMedCrossRefGoogle Scholar
  17. Dammeyer T, Hofmann E, Frankenberg-Dinkel N (2008) Phycoerythrobilin synthase (PebS) of a marine virus – Crystal structures of the biliverdin complex and the substrate-free form. J Biol Chem 283:27547–27554PubMedCrossRefGoogle Scholar
  18. Dolganov N, Grossman AR (1999) A polypeptide with similarity to phycocyanin α-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 181:610–617PubMedGoogle Scholar
  19. Ducret A, Sidler W, Frank G, Zuber H (1994) The complete amino acid sequence of R-Phycocyanin-I α and β subunits from the red alga Porphyridium cruentum: structural and phylogenetic relationships of the phycocyanins within the phycobiliproteins families. Eur J Biochem 221:563–580PubMedCrossRefGoogle Scholar
  20. Fairchild CD, Glazer AN (1994a) Nonenzymatic bilin addition to the α subunit of an apophycoerythrin. J Biol Chem 269:28988–28996PubMedGoogle Scholar
  21. Fairchild CD, Glazer AN (1994b) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase. J Biol Chem 269:8686–8694PubMedGoogle Scholar
  22. Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA, Glazer AN (1992) Phycocyanin α subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89:7017–7021PubMedCrossRefGoogle Scholar
  23. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14PubMedGoogle Scholar
  24. Frankenberg N, Mukougawa KK, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–978PubMedGoogle Scholar
  25. Gindt YM, Zhou J, Bryant DA, Sauer K (1994) Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the Lcm, β18 and αAP-B chromophores. Biochim Biophys Acta 1186:153–162PubMedCrossRefGoogle Scholar
  26. Gingrich JC, Lundell DJ, Glazer AN (1983) Core substructure in cyanobacterial phycobilisomes. J Cell Biochem 22:1–14PubMedCrossRefGoogle Scholar
  27. Glazer AN (1984) Phycobilisome: a macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768:29–51CrossRefGoogle Scholar
  28. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47–77PubMedCrossRefGoogle Scholar
  29. Glazer AN (1989) Light guides: directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1–4PubMedGoogle Scholar
  30. Glazer AN (1994) Phycobiliproteins – A family of valuable, widely used fluorophores. J. Appl. Phycol. 6:105–112CrossRefGoogle Scholar
  31. Glazer AN, Lundell DJ, Yamanaka G, Williams RC (1983) The structure of a “simple” phycobilisome. Ann Microbiol (Inst Pasteur) 134B:159–180CrossRefGoogle Scholar
  32. Glazer AN, Stryer L (1983) Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J 43:383–386PubMedCrossRefGoogle Scholar
  33. Glazer AN, Stryer L (1984) Phycofuor probes. Trends Biochem Sci 9:423–427CrossRefGoogle Scholar
  34. Glazer AN, Stryer L (1990) Phycobiliprotein avidin and phycobiliprotein biotin conjugates. Methods Enzymol 184:188–194PubMedCrossRefGoogle Scholar
  35. Grzyb J, Latowski D, Strzalka K (2006) Lipocalins – A family portrait. J Plant Physiol 163:895–915PubMedCrossRefGoogle Scholar
  36. Hamada T, Matsunaga S, Yano G, Fusetani. N (2005) Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc 127:110–118PubMedCrossRefGoogle Scholar
  37. Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482:84–91CrossRefGoogle Scholar
  38. Huber R et al (1987a) Crystallization, crystal-structure analysis and preliminary molecular-model of the bilin binding protein from the insect Pieris brassicae J Mol Biol 195:423–434PubMedCrossRefGoogle Scholar
  39. Huber R et al (1987b) Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 A resolution. J Mol Biol 198:499–513PubMedCrossRefGoogle Scholar
  40. Jung LJ, Chan CF, Glazer AN (1995) Candidate genes for the phycoerythrocyanin α subunit lyase: biochemical analysis of pecE and pecF interposon mutants. J Biol Chem 270:12877–12884PubMedGoogle Scholar
  41. Kahn K, Mazel D, Houmard J, Tandeau de Marsac N, Schaefer MR (1997) A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179:998–1006PubMedGoogle Scholar
  42. Klotz AV, Glazer AN (1987) gamma-N-methylasparagine in phycobiliproteins. Occurrence, location, and biosynthesis. J Biol Chem 262:17350–17355PubMedGoogle Scholar
  43. Klotz AV, Leary JA, Glazer AN (1986) Post-translational methylation of asparaginyl residues. Identification of beta-71 gamma-N-methylasparagine in allophycocyanin. J Biol Chem 261:15891–15894PubMedGoogle Scholar
  44. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yakota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436PubMedGoogle Scholar
  45. Kuzin AP et al (2007) Crystal structure of fatty acid-binding protein-like Ycf58 from Thermosynecoccus elongatus. Northeast structural genomics consortium target Ter13. In: pdb ID: 3BDR
  46. Miller CA (2007) Identification and characterization of enzymes involved in post-translational modifications of phycobiliproteins in the cyanobacterium Synechocystis sp. PCC 6803. In: Department of Biological Sciences. University of New Orleans, New Orleans, LA p 130Google Scholar
  47. Miller CA et al (2008) Biogenesis of phycobiliproteins.III. CpcM is the asparagine methyltransferase for phycobiliprotein β-subunits in cyanobacteria. J Biol Chem 283 19293–19300PubMedCrossRefGoogle Scholar
  48. Morimoto K, Nishio K, Nakai M (2002) Identification of a novel prokaryotic HEAT-repeats-containing protein which interacts with a cyanobacterial IscA homolog. FEBS Lett 519:123–127PubMedCrossRefGoogle Scholar
  49. Morimoto K, Sato S, Tabata S, Nakai M (2003) A HEAT-repeats containing protein, IaiH, stablizes the iron-sulfur cluster bound to the cyanobacterial IscA homologue, IscA2. J Biochem (Tokyo) 134:211–217CrossRefGoogle Scholar
  50. Newcomer ME, Ong DE (2000) Plasma retinol binding protein: structure and function of the prototypic lipocalin. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482:57–64CrossRefGoogle Scholar
  51. Ong LJ, Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J Biol Chem 266:9515–9527PubMedGoogle Scholar
  52. Rümbeli R, Suter F, Wirth M, Sidler W, Zuber H (1987) [gamma]-N-methylasparagine in phycobiliproteins from the cyanobacteria Mastigocladus laminosus and Calothrix. FEBS Lett 221:1–2CrossRefGoogle Scholar
  53. Saunée NA, Williams SR, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins. II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82 of beta -phycocyanin and Cys-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283:7513–7522PubMedCrossRefGoogle Scholar
  54. Scheer H, Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Mol Microbiol 68:263–276PubMedCrossRefGoogle Scholar
  55. Schirmer T, Bode W, Huber R, Sidler W, Zuber H (1985) X-ray crystallographyic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257–277PubMedCrossRefGoogle Scholar
  56. Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: the molecular model and its implications from light-harvesting. J Mol Biol 188:651–676PubMedCrossRefGoogle Scholar
  57. Schluchter WM, Glazer AN (eds) (1999) Biosynthesis of phycobiliproteins in cyanobacteria. Plenum, New YorkGoogle Scholar
  58. Sehringer B, Kayser H (2006) Butterfly wings, a new site of porphyrin synthesis and cleavage: studies on the expression of the lipocalin bilin-binding protein in Pieris brassicae. Insect Biochem Mol Biol 36:482–491PubMedCrossRefGoogle Scholar
  59. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136CrossRefGoogle Scholar
  60. Shan J, Jia J, Clokie MR, Mann NH (2008) Infection by the “photosynthetic” phage S-PM2 induces increased synthesis of phycoerythrin in Synechococcus sp. WH7803. FEMS Microbiol Lett 283:154–161PubMedCrossRefGoogle Scholar
  61. Shen GZ, Saunee NA, Gallo E, Begovic Z, Schluchter WM, Bryant DA (2004) Identification of novel phycobiliprotein lyases in cyanobacteria. In: Niederman RA, Blankenship RE, Frank H, Robert B, van Grondelle R (eds) Photosynthesis 2004 Light-Harvesting Systems Workshop, Saint Adele, Quebec, Canada, pp 14–15Google Scholar
  62. Shen G, Saunee NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA (2006) Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem 281:17768–17778PubMedCrossRefGoogle Scholar
  63. Shen G, Leonard HS, Schluchter WM, Bryant DA (2008a) CpcM post-translationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. J Bacteriol 190:4808–4817PubMedCrossRefGoogle Scholar
  64. Shen G, Schluchter WM, Bryant DA (2008b) Biogenesis of phycobiliproteins. I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phycocaynobilin lyase specific for beta -phycocyanin and allophycocyanin subunits. J Biol Chem 28:7503–7512CrossRefGoogle Scholar
  65. Six C et al (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259Google Scholar
  66. Storf M et al (2001) Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry 40:12444–12456PubMedCrossRefGoogle Scholar
  67. Swanson R, Glazer A (1990) Phycobiliprotein methylation: effect of the γ-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol 214:787–796PubMedCrossRefGoogle Scholar
  68. Swanson RV et al (1992) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267:16146–16154PubMedGoogle Scholar
  69. Takano H, Gusella J (2002) The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci 14:15CrossRefGoogle Scholar
  70. Thomas BA, Bricker TM, Klotz AV (1993) Post-translational methylation of phycobilisomes and oxygen evolution efficiency in cyanobacteria. Biochim Biophys Acta 1143:104–108CrossRefGoogle Scholar
  71. Thomas BA, McMahon LP, Klotz AV (1994) Gamma-N-methylasparagine- A Posttranslational modification that improves energy-transfer efficiency in phycobiliproteins. Biophys J 66:A164–A164Google Scholar
  72. Tooley A, Cai Y, Glazer A (2001) Biosynthesis of a fluorescent cyanobacterial C-Phycocyanin holo-α subunit in a heterologous host. Proc Natl Acad Sci USA 98:10560–10565PubMedCrossRefGoogle Scholar
  73. Wilbanks SM, Glazer AN (1993a) Rod structure of a phycoerythrin II-containing phycobilisome I: organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020. J Biol Chem 268:1226–1235PubMedGoogle Scholar
  74. Wilbanks SM, Glazer AN (1993b) Rod structure of a phycoerythrin II-containing phycobilisome II: complete sequence and bilin attachment site of a phycoerythrin γ subunit. J Biol Chem 268:1236–1241PubMedGoogle Scholar
  75. Wilbanks SM, Wedemayer G, Glazer AN (1989) Posttranslational modifications of the b-Subunit of a cryptomonad phycoerythrin. J Biol Chem 264:17860–17867PubMedGoogle Scholar
  76. Xu Y, Alvey R, Byrne PO, Graham JE, Shen G, Bryant DA (2010) Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. In: Carpentier R (ed) Photosynthesis research protocols. Humana, Totowa, NJ (in press)Google Scholar
  77. Zhao KH et al (2000) Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycobiliviolin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett 469:9–13PubMedCrossRefGoogle Scholar
  78. Zhao KH et al (2002) Characterization of phycoviolobilin phycoerythrocyanin-alpha 84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. Eur J Biochem 269:4542–4550PubMedCrossRefGoogle Scholar
  79. Zhao KH et al (2005) Reconstitution of phycobilisome core-membrane linker, L-CM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Acta-Bioenerg 1706:81–87CrossRefGoogle Scholar
  80. Zhao KH et al (2006) Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cystein-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120. J Biol Chem 281:8573–8581PubMedCrossRefGoogle Scholar
  81. Zhao K et al (2007a) Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci USA 104:14300–14305PubMedCrossRefGoogle Scholar
  82. Zhao KH et al (2007b) Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin beta-subunits. J Biol Chem 282:34093–34103PubMedCrossRefGoogle Scholar
  83. Zhou J, Gasparich GE, Stirewalt VL, de Lorimier R, Bryant DA (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002: construction and phenotypic characterization of interposon mutants. J Biol Chem 267:16138–16145PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wendy M. Schluchter
    • 1
    Email author
  • Gaozhong Shen
    • 2
  • Richard M. Alvey
    • 2
  • Avijit Biswas
    • 1
  • Nicolle A. Saunée
    • 1
  • Shervonda R. Williams
    • 1
  • Crystal A. Mille
    • 1
  • Donald A. Bryant
    • 2
  1. 1.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations