Advertisement

A 2-Categories Companion

  • Stephen LackEmail author
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 152)

Abstract

This paper is a rather informal guide to some of the basic theory of 2-categories and bicategories, including notions of limit and colimit, 2-dimensional universal algebra, formal category theory, and nerves of bicategories.

Keywords

Natural Transformation Monoidal Category Weak Equivalence Left Adjoint Monoidal Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

It is a pleasure to acknowledge support and encouragement from a number of sources. I am grateful to the Institute for Mathematics and its Applications, Minneapolis for hosting and supporting the workshop on higher categories in 2004, and to John Baez and Peter May who organized the workshop and who encouraged me to publish these notes. The material here was based on lectures I gave at the University of Chicago in 2006, at the invitation of Peter May and Eugenia Cheng. I’m grateful to them for their hospitality, and the interest that they and the topology/categories group at Chicago took in these lectures. I’m particularly grateful to Mike Shulman, whose excellent TeXed notes of the lectures were the basis for the companion.

References

  1. [1]
    Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories, Vol. 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.Google Scholar
  2. [2]
    Michael Barr. Coequalizers and free triples. Math. Z., 116:307–322, 1970.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Jon Beck. Distributive laws. In Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pages 119–140. Springer, Berlin, 1969.Google Scholar
  4. [4]
    Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages 1–77. Springer, Berlin, 1967.Google Scholar
  5. [5]
    Renato Betti, Aurelio Carboni, Ross Street, and Robert Walters. Variation through enrichment. J. Pure Appl. Algebra, 29(2):109–127, 1983.CrossRefMathSciNetGoogle Scholar
  6. [6]
    G.J. Bird, G.M. Kelly, A.J. Power, and R.H. Street. Flexible limits for 2-categories. J. Pure Appl. Algebra, 61(1):1–27, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional monad theory. J. Pure Appl. Algebra, 59(1):1–41, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Eugenia Cheng, Martin Hyland, and John Power. Pseudo-distributive laws. Elec. Notes. Theoretical Comp. Sci, 83:1–3, 2004.Google Scholar
  9. [9]
    Denis-Charles Cisinski. La classe des morphismes de Dwyer n’est pas stable par retractes. Cahiers Topologie Géom. Différentielle Catég., 40(3):227–231, 1999.zbMATHGoogle Scholar
  10. [10]
    Jean-Marc Cordier and Timothy Porter. Homotopy coherent category theory.Trans. Amer. Math. Soc., 349(1):1–54, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Brian Day and Ross Street. Monoidal bicategories and Hopf algebroids. Adv. Math., 129(1):99–157, 1997.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Eduardo J. Dubuc and G.M. Kelly. A presentation of Topoi as algebraic relative to categories or graphs. J. Algebra, 81(2):420–433, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Charles Ehresmann. Catégories et structures. Dunod, Paris, 1965.zbMATHGoogle Scholar
  14. [14]
    Samuel Eilenberg and G. Max Kelly. Closed categories. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pages 421–562. Springer, New York, 1966.Google Scholar
  15. [15]
    Thomas M. Fiore. Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory. Mem. Amer. Math. Soc., 182(860):x+171, 2006.Google Scholar
  16. [16]
    Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, Berlin, 1971.zbMATHGoogle Scholar
  17. [17]
    John W. Gray. Formal category theory: adjointness for 2-categories. Springer-Verlag, Berlin, 1974.zbMATHGoogle Scholar
  18. [18]
    Mark Hovey. Model categories, Vol. 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.zbMATHGoogle Scholar
  19. [19]
    André Joyal and Ross Street. Pullbacks equivalent to pseudopullbacks. Cahiers Topologie Géom. Différentielle Catég., 34(2):153–156, 1993.zbMATHGoogle Scholar
  20. [20]
    André Joyal and Myles Tierney. Strong stacks and classifying spaces. In Category theory (Como, 1990), Vol. 1488 of Lecture Notes in Math., pages 213–236. Springer, Berlin, 1991.Google Scholar
  21. [21]
    G.M. Kelly. Coherence theorems for lax algebras and for distributive laws. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 281–375. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
  22. [22]
    G.M. Kelly. Doctrinal adjunction. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 257–280. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
  23. [23]
    G.M. Kelly. On clubs and doctrines. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 181–256. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
  24. [24]
    G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc., 22(1):1–83, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    G.M. Kelly. Structures defined by finite limits in the enriched context. I. Cahiers Topologie Géom. Différentielle, 23(1):3–42, 1982.zbMATHGoogle Scholar
  26. [26]
    G.M. Kelly. Elementary observations on 2-categorical limits. Bull. Austral. Math. Soc., 39(2):301–317, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    G.M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137 pp. (electronic), 2005. Originally published as LMS Lecture Notes 64, 1982.Google Scholar
  28. [28]
    G.M. Kelly and Stephen Lack. On property-like structures. Theory Appl. Categ., 3(9):213–250 (electronic), 1997.zbMATHMathSciNetGoogle Scholar
  29. [29]
    G.M. Kelly and A.J. Power. Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure Appl. Algebra, 89(1–2):163–179, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    G.M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 75–103. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
  31. [31]
    Max Kelly, Anna Labella, Vincent Schmitt, and Ross Street. Categories enriched on two sides. J. Pure Appl. Algebra, 168(1):53–98, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Stephen Lack. On the monadicity of finitary monads. J. Pure Appl. Algebra, 140(1):65–73, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Stephen Lack. A coherent approach to pseudomonads. Adv. Math., 152(2):179–202, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Stephen Lack. Codescent objects and coherence. J. Pure Appl. Algebra, 175(1–3):223–241, 2002.zbMATHMathSciNetGoogle Scholar
  35. [35]
    Stephen Lack. A Quillen model structure for 2-categories. K-Theory, 26(2):171–205, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    Stephen Lack. A Quillen model structure for bicategories. K-Theory, 33(3):185–197, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    Stephen Lack. Limits for lax morphisms. Appl. Categ. Structures, 13(3):189–203, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    Stephen Lack. Homotopy-theoretic aspects of 2-monads. Journal of Homotopy and Related Structures, to appear, available as arXiv.math.CT/0607646.Google Scholar
  39. [39]
    Stephen Lack and Simona Paoli. 2-nerves of bicategories. K-Theory, to appear, available as arXiv.math.CT/0607271.Google Scholar
  40. [40]
    Stephen Lack and Ross Street. The formal theory of monads. II. J. Pure Appl. Algebra, 175(1–3):243–265, 2002.zbMATHMathSciNetGoogle Scholar
  41. [41]
    Aaron D. Lauda. Frobenius algebras and ambidextrous adjunctions. Theory Appl. Categ., 16(4):84–122 (electronic), 2006.zbMATHMathSciNetGoogle Scholar
  42. [42]
    F. William Lawvere. Ordinal sums and equational doctrines. In Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pages 141–155. Springer, Berlin, 1969.CrossRefGoogle Scholar
  43. [43]
    F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135–166 (1974), 1973. Reprinted as Repr. Theory Appl. Categ. 1:1–37, 2002.CrossRefMathSciNetGoogle Scholar
  44. [44]
    Saunders Mac Lane and Robert Paré. Coherence for bicategories and indexed categories. J. Pure Appl. Algebra, 37(1):59–80, 1985.MathSciNetGoogle Scholar
  45. [45]
    F. Marmolejo. Doctrines whose structure forms a fully faithful adjoint string. Theory Appl. Categ., 3(2):24–44 (electronic), 1997.zbMATHMathSciNetGoogle Scholar
  46. [46]
    F. Marmolejo. Distributive laws for pseudomonads. Theory Appl. Categ., 5(5):91–147 (electronic), 1999.zbMATHMathSciNetGoogle Scholar
  47. [47]
    Paddy McCrudden. Opmonoidal monads. Theory Appl. Categ., 10(19):469–485 (electronic), 2002.zbMATHMathSciNetGoogle Scholar
  48. [48]
    I. Moerdijk. Monads on tensor categories. J. Pure Appl. Algebra, 168(2–3):189–208, 2002. Category theory 1999 (Coimbra).zbMATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    A.J. Power. Coherence for bicategories with finite bilimits. I. In Categories in computer science and logic (Boulder, CO, 1987), Vol. 92 of Contemp. Math., pages 341–347. Amer. Math. Soc., Providence, RI, 1989.Google Scholar
  50. [50]
    A.J. Power. A general coherence result. J. Pure Appl. Algebra, 57(2):165–173, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    John Power. Enriched Lawvere theories. Theory Appl. Categ., 6:83–93 (electronic), 1999. The Lambek Festschrift.zbMATHMathSciNetGoogle Scholar
  52. [52]
    John Power and Edmund Robinson. A characterization of pie limits. Math. Proc. Cambridge Philos. Soc., 110(1):33–47, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967.Google Scholar
  54. [54]
    Ross Street. The formal theory of monads. J. Pure Appl. Algebra, 2(2):149–168, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  55. [55]
    Ross Street. Two constructions on lax functors. Cahiers Topologie Géom. Différentielle, 13:217–264, 1972.zbMATHGoogle Scholar
  56. [56]
    Ross Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra, 8(2):149–181, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  57. [57]
    Ross Street. Fibrations in bicategories. Cahiers Topologie Géom. Différentielle, 21(2):111–160, 1980.zbMATHGoogle Scholar
  58. [58]
    Ross Street. Frobenius monads and pseudomonoids. J. Math. Phys., 45(10):3930–3948, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  59. [59]
    Ross Street and Robert Walters. Yoneda structures on 2-categories. J. Algebra, 50(2):350–379, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  60. [60]
    Zouhair Tamsamani. Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux. K-Theory, 16(1):51–99, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  61. [61]
    R.W. Thomason. Cat as a closed model category. Cahiers Topologie Géom. Différentielle, 21(3):305–324, 1980.zbMATHMathSciNetGoogle Scholar
  62. [62]
    Dominic Verity. Complicial sets: Characterising the simplicial nerves of strict ω-categories. Mem. Amer. Math. Soc., to appear.Google Scholar
  63. [63]
    R.F.C. Walters. Sheaves and Cauchy-complete categories. Cahiers Topologie Géom. Différentielle, 22(3):283–286, 1981.zbMATHMathSciNetGoogle Scholar
  64. [64]
    R.F.C. Walters. Sheaves on sites as Cauchy-complete categories. J. Pure Appl. Algebra, 24(1):95–102, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  65. [65]
    K. Worytkiewicz, K. Hess, P.-E. Parent, and A. Tonks. A model structure à la Thomason on 2-cat. J. Pure Appl. Algebra, 208(1):205–236, 2006.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.School of Computing and MathematicsUniversity of Western SydneyPenrith South DCAustralia

Personalised recommendations