Towards Higher Categories pp 105-191 | Cite as
A 2-Categories Companion
Abstract
This paper is a rather informal guide to some of the basic theory of 2-categories and bicategories, including notions of limit and colimit, 2-dimensional universal algebra, formal category theory, and nerves of bicategories.
Keywords
Natural Transformation Monoidal Category Weak Equivalence Left Adjoint Monoidal FunctorPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
It is a pleasure to acknowledge support and encouragement from a number of sources. I am grateful to the Institute for Mathematics and its Applications, Minneapolis for hosting and supporting the workshop on higher categories in 2004, and to John Baez and Peter May who organized the workshop and who encouraged me to publish these notes. The material here was based on lectures I gave at the University of Chicago in 2006, at the invitation of Peter May and Eugenia Cheng. I’m grateful to them for their hospitality, and the interest that they and the topology/categories group at Chicago took in these lectures. I’m particularly grateful to Mike Shulman, whose excellent TeXed notes of the lectures were the basis for the companion.
References
- [1]Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories, Vol. 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.Google Scholar
- [2]Michael Barr. Coequalizers and free triples. Math. Z., 116:307–322, 1970.CrossRefMathSciNetGoogle Scholar
- [3]Jon Beck. Distributive laws. In Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pages 119–140. Springer, Berlin, 1969.Google Scholar
- [4]Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages 1–77. Springer, Berlin, 1967.Google Scholar
- [5]Renato Betti, Aurelio Carboni, Ross Street, and Robert Walters. Variation through enrichment. J. Pure Appl. Algebra, 29(2):109–127, 1983.CrossRefMathSciNetGoogle Scholar
- [6]G.J. Bird, G.M. Kelly, A.J. Power, and R.H. Street. Flexible limits for 2-categories. J. Pure Appl. Algebra, 61(1):1–27, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
- [7]R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional monad theory. J. Pure Appl. Algebra, 59(1):1–41, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
- [8]Eugenia Cheng, Martin Hyland, and John Power. Pseudo-distributive laws. Elec. Notes. Theoretical Comp. Sci, 83:1–3, 2004.Google Scholar
- [9]Denis-Charles Cisinski. La classe des morphismes de Dwyer n’est pas stable par retractes. Cahiers Topologie Géom. Différentielle Catég., 40(3):227–231, 1999.zbMATHGoogle Scholar
- [10]Jean-Marc Cordier and Timothy Porter. Homotopy coherent category theory.Trans. Amer. Math. Soc., 349(1):1–54, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
- [11]Brian Day and Ross Street. Monoidal bicategories and Hopf algebroids. Adv. Math., 129(1):99–157, 1997.CrossRefMathSciNetGoogle Scholar
- [12]Eduardo J. Dubuc and G.M. Kelly. A presentation of Topoi as algebraic relative to categories or graphs. J. Algebra, 81(2):420–433, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
- [13]
- [14]Samuel Eilenberg and G. Max Kelly. Closed categories. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pages 421–562. Springer, New York, 1966.Google Scholar
- [15]Thomas M. Fiore. Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory. Mem. Amer. Math. Soc., 182(860):x+171, 2006.Google Scholar
- [16]Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, Berlin, 1971.zbMATHGoogle Scholar
- [17]John W. Gray. Formal category theory: adjointness for 2-categories. Springer-Verlag, Berlin, 1974.zbMATHGoogle Scholar
- [18]Mark Hovey. Model categories, Vol. 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.zbMATHGoogle Scholar
- [19]André Joyal and Ross Street. Pullbacks equivalent to pseudopullbacks. Cahiers Topologie Géom. Différentielle Catég., 34(2):153–156, 1993.zbMATHGoogle Scholar
- [20]André Joyal and Myles Tierney. Strong stacks and classifying spaces. In Category theory (Como, 1990), Vol. 1488 of Lecture Notes in Math., pages 213–236. Springer, Berlin, 1991.Google Scholar
- [21]G.M. Kelly. Coherence theorems for lax algebras and for distributive laws. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 281–375. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
- [22]G.M. Kelly. Doctrinal adjunction. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 257–280. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
- [23]G.M. Kelly. On clubs and doctrines. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 181–256. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
- [24]G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc., 22(1):1–83, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
- [25]G.M. Kelly. Structures defined by finite limits in the enriched context. I. Cahiers Topologie Géom. Différentielle, 23(1):3–42, 1982.zbMATHGoogle Scholar
- [26]G.M. Kelly. Elementary observations on 2-categorical limits. Bull. Austral. Math. Soc., 39(2):301–317, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
- [27]G.M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137 pp. (electronic), 2005. Originally published as LMS Lecture Notes 64, 1982.Google Scholar
- [28]G.M. Kelly and Stephen Lack. On property-like structures. Theory Appl. Categ., 3(9):213–250 (electronic), 1997.zbMATHMathSciNetGoogle Scholar
- [29]G.M. Kelly and A.J. Power. Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure Appl. Algebra, 89(1–2):163–179, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
- [30]G.M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 75–103. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
- [31]Max Kelly, Anna Labella, Vincent Schmitt, and Ross Street. Categories enriched on two sides. J. Pure Appl. Algebra, 168(1):53–98, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
- [32]Stephen Lack. On the monadicity of finitary monads. J. Pure Appl. Algebra, 140(1):65–73, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
- [33]Stephen Lack. A coherent approach to pseudomonads. Adv. Math., 152(2):179–202, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
- [34]Stephen Lack. Codescent objects and coherence. J. Pure Appl. Algebra, 175(1–3):223–241, 2002.zbMATHMathSciNetGoogle Scholar
- [35]Stephen Lack. A Quillen model structure for 2-categories. K-Theory, 26(2):171–205, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
- [36]Stephen Lack. A Quillen model structure for bicategories. K-Theory, 33(3):185–197, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
- [37]Stephen Lack. Limits for lax morphisms. Appl. Categ. Structures, 13(3):189–203, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
- [38]Stephen Lack. Homotopy-theoretic aspects of 2-monads. Journal of Homotopy and Related Structures, to appear, available as arXiv.math.CT/0607646.Google Scholar
- [39]Stephen Lack and Simona Paoli. 2-nerves of bicategories. K-Theory, to appear, available as arXiv.math.CT/0607271.Google Scholar
- [40]Stephen Lack and Ross Street. The formal theory of monads. II. J. Pure Appl. Algebra, 175(1–3):243–265, 2002.zbMATHMathSciNetGoogle Scholar
- [41]Aaron D. Lauda. Frobenius algebras and ambidextrous adjunctions. Theory Appl. Categ., 16(4):84–122 (electronic), 2006.zbMATHMathSciNetGoogle Scholar
- [42]F. William Lawvere. Ordinal sums and equational doctrines. In Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pages 141–155. Springer, Berlin, 1969.CrossRefGoogle Scholar
- [43]F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135–166 (1974), 1973. Reprinted as Repr. Theory Appl. Categ. 1:1–37, 2002.CrossRefMathSciNetGoogle Scholar
- [44]Saunders Mac Lane and Robert Paré. Coherence for bicategories and indexed categories. J. Pure Appl. Algebra, 37(1):59–80, 1985.MathSciNetGoogle Scholar
- [45]F. Marmolejo. Doctrines whose structure forms a fully faithful adjoint string. Theory Appl. Categ., 3(2):24–44 (electronic), 1997.zbMATHMathSciNetGoogle Scholar
- [46]F. Marmolejo. Distributive laws for pseudomonads. Theory Appl. Categ., 5(5):91–147 (electronic), 1999.zbMATHMathSciNetGoogle Scholar
- [47]Paddy McCrudden. Opmonoidal monads. Theory Appl. Categ., 10(19):469–485 (electronic), 2002.zbMATHMathSciNetGoogle Scholar
- [48]I. Moerdijk. Monads on tensor categories. J. Pure Appl. Algebra, 168(2–3):189–208, 2002. Category theory 1999 (Coimbra).zbMATHCrossRefMathSciNetGoogle Scholar
- [49]A.J. Power. Coherence for bicategories with finite bilimits. I. In Categories in computer science and logic (Boulder, CO, 1987), Vol. 92 of Contemp. Math., pages 341–347. Amer. Math. Soc., Providence, RI, 1989.Google Scholar
- [50]A.J. Power. A general coherence result. J. Pure Appl. Algebra, 57(2):165–173, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
- [51]John Power. Enriched Lawvere theories. Theory Appl. Categ., 6:83–93 (electronic), 1999. The Lambek Festschrift.zbMATHMathSciNetGoogle Scholar
- [52]John Power and Edmund Robinson. A characterization of pie limits. Math. Proc. Cambridge Philos. Soc., 110(1):33–47, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
- [53]Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967.Google Scholar
- [54]Ross Street. The formal theory of monads. J. Pure Appl. Algebra, 2(2):149–168, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
- [55]Ross Street. Two constructions on lax functors. Cahiers Topologie Géom. Différentielle, 13:217–264, 1972.zbMATHGoogle Scholar
- [56]Ross Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra, 8(2):149–181, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
- [57]Ross Street. Fibrations in bicategories. Cahiers Topologie Géom. Différentielle, 21(2):111–160, 1980.zbMATHGoogle Scholar
- [58]Ross Street. Frobenius monads and pseudomonoids. J. Math. Phys., 45(10):3930–3948, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
- [59]Ross Street and Robert Walters. Yoneda structures on 2-categories. J. Algebra, 50(2):350–379, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
- [60]Zouhair Tamsamani. Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux. K-Theory, 16(1):51–99, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
- [61]R.W. Thomason. Cat as a closed model category. Cahiers Topologie Géom. Différentielle, 21(3):305–324, 1980.zbMATHMathSciNetGoogle Scholar
- [62]Dominic Verity. Complicial sets: Characterising the simplicial nerves of strict ω-categories. Mem. Amer. Math. Soc., to appear.Google Scholar
- [63]R.F.C. Walters. Sheaves and Cauchy-complete categories. Cahiers Topologie Géom. Différentielle, 22(3):283–286, 1981.zbMATHMathSciNetGoogle Scholar
- [64]R.F.C. Walters. Sheaves on sites as Cauchy-complete categories. J. Pure Appl. Algebra, 24(1):95–102, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
- [65]K. Worytkiewicz, K. Hess, P.-E. Parent, and A. Tonks. A model structure à la Thomason on 2-cat. J. Pure Appl. Algebra, 208(1):205–236, 2006.CrossRefMathSciNetGoogle Scholar