Cytotoxic and Protective Activity of Nitric Oxide in Cancers

  • Gen-Ichiro SomaEmail author
  • Chie Kohchi
  • Hiroyuki Inagawa
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Nitric oxide (NO), synthesized from l-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO promotes apoptosis in some tumor cells, but provokes anti-apoptotic activity in other tumor cells. For this reason, conflicting viewpoints have arisen as to whether nitric oxide is cytotoxic or protective in cancer cells.

Part of the complexity of NO concentrations in tumor cells or tissues can be attributed to cell death and the formation of an anti-apoptotic cascade with nitrosylation of biological molecules from substances such as metal ions, thiol, the amino acid tyrosine, and reactive oxygen species. During the last 5 years, there have been many excellent reviews concerning the role of NO in cancer therapy, tumor apoptosis, and metastases. Here, the recent knowledge of cytotoxic (apoptotic) and cytoprotective (anti-apoptotic) activity of NO in cancer will be reviewed.


Apoptosis Anti-apoptosis Caspase Bcl Mitochondria TNF Fas TRAIL NF-κB S-nitrosylation Proteasome 


  1. Adams, C., McCarthy, H.O., Coulter, J.A., Worthington, J., Murphy, C., Robson, T., and Hirst, D. G. (2009). Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J. Gene Med. 11, 160–168.PubMedCrossRefGoogle Scholar
  2. Ambs, S., Merriam, W.G., Ogunfusika, M.O., Bennett, W.P., Ishibe, N., Hussain, S.P., Tzeng, E.E., Geller, D.A., Billiar, T.R., and Harris, C.C. (1998). P53 and vascular endothelial growth factor regulate tumor growth of nos2-expressing human carcinoma cells. Nat. Med. 4, 1371–1376.PubMedCrossRefGoogle Scholar
  3. Azad, N., Vallyathan, V., Wang, L., Tantishaiyakul, V., Stehlik, C., Leonard, S.S., and Rojanasakul, Y. (2006). S-nitrosylation of bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281, 34124–34134.PubMedCrossRefGoogle Scholar
  4. Azizzadeh, B., Yip, H.T., Blackwell, K.E., Horvath, S., Calcaterra, T.C., Buga, G.M., Ignarro, L.J., and Wang, M.B. (2001). Nitric oxide improves cisplatin cytotoxicity in head and neck squamous cell carcinoma. Laryngoscope 111, 1896–1900.PubMedCrossRefGoogle Scholar
  5. Basolo, F., Fiore, L., Baldanzi, A., Giannini, R., Dell’Omodarme, M., Fontanini, G., Pacini, F., Danesi, R., Miccoli, P., and Toniolo, A. (2000). Suppression of fas expression and down-regulation of fas ligand in highly aggressive human thyroid carcinoma. Lab Invest. 80, 1413–1419.PubMedCrossRefGoogle Scholar
  6. Bauer, P.M., Buga, G.M., Fukuto, J.M., Pegg, A.E., and Ignarro, L.J. (2001). Nitric oxide inhibits ornithine decarboxylase via s-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34458–34464.PubMedCrossRefGoogle Scholar
  7. Beltz, L.A., Bayer, D.K., Moss, A.L., and Simet, I.M. (2006). Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem. 6, 389–406.PubMedCrossRefGoogle Scholar
  8. Ben-Hur, H., Gurevich, P., Ben-Arie, A., Huszar, M., Berman, V., Tendler, Y., Tchanishev, R., Mor, G., Gershon, S., and Zusman, I. (2000). Apoptosis and apoptosis-related proteins (fas, fas ligand, bcl-2, p53) in macrophages of human ovarian epithelial tumors. Eur. J. Gynaecol. Oncol. 21, 141–145.PubMedGoogle Scholar
  9. Benhar, M., Forrester, M.T., Hess, D.T., and Stamler, J.S. (2008). Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320, 1050–1054.PubMedCrossRefGoogle Scholar
  10. Bonavida, B., Baritaki, S., Huerta-Yepez, S., Vega, M. I., Chatterjee, D., and Yeung, K. (2008). Novel therapeutic applications of nitric oxide donors in cancer: Roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide 19, 152–157.PubMedCrossRefGoogle Scholar
  11. Bonavida, B., Khineche, S., Huerta-Yepez, S., and Garban, H. (2006). Therapeutic potential of nitric oxide in cancer. Drug Resist. Updat. 9, 157–173.PubMedCrossRefGoogle Scholar
  12. Boudreau, N. and Myers, C. (2003). Breast cancer-induced angiogenesis: Multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 5, 140–146.PubMedCrossRefGoogle Scholar
  13. Bratasz, A., Selvendiran, K., Wasowicz, T., Bobko, A., Khramtsov, V.V., Ignarro, L.J., and Kuppusamy, P. (2008). Ncx-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols. J. Transl. Med. 6, 9.PubMedCrossRefGoogle Scholar
  14. Bratasz, A., Weir, N.M., Parinandi, N.L., Zweier, J.L., Sridhar, R., Ignarro, L.J., and Kuppusamy, P. (2006). Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by ncx-4016, a nitro derivative of aspirin. Proc. Natl. Acad. Sci. U S A 103, 3914–3919.PubMedCrossRefGoogle Scholar
  15. Brookes, P.S., Salinas, E.P., Darley-Usmar, K., Eiserich, J.P., Freeman, B.A., Darley-Usmar, V.M., and Anderson, P.G. (2000). Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J. Biol. Chem. 275, 20474–20479.PubMedCrossRefGoogle Scholar
  16. Brune, B., Sandau, K., and von Knethen, A. (1998). Apoptotic cell death and nitric oxide: Activating and antagonistic transducing pathways. Biochemistry (Mosc) 63, 817–825.Google Scholar
  17. Butler, A.R., Al-Sa’doni, H.H., Megson, I.L., and Flitney, F.W. (1998). Synthesis, decomposition, and vasodilator action of some new s-nitrosated dipeptides. Nitric Oxide 2, 193–202.PubMedCrossRefGoogle Scholar
  18. Campbell, M.J., Esserman, L.J., Zhou, Y., Shoemaker, M., Lobo, M., Borman, E., Baehner, F., Kumar, A.S., Adduci, K., Marx, C., Petricoin, E.F., Liotta, L.A., Winters, M., Benz, S., and Benz, C.C. (2006). Breast cancer growth prevention by statins. Cancer Res. 66, 8707–8714.PubMedCrossRefGoogle Scholar
  19. Carmeliet, P. and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.PubMedCrossRefGoogle Scholar
  20. Chakrapani, H., Goodblatt, M.M., Udupi, V., Malaviya, S., Shami, P.J., Keefer, L.K., and Saavedra, J.E. (2008). Synthesis and in vitro anti-leukemic activity of structural analogues of js-k, an anti-cancer lead compound. Bioorg. Med. Chem. Lett. 18, 950–953.PubMedCrossRefGoogle Scholar
  21. Chandele, A., Prasad, V., Jagtap, J.C., Shukla, R., and Shastry, P.R. (2004). Upregulation of survivin in g2/m cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis. Neoplasia 6, 29–40.PubMedGoogle Scholar
  22. Chanvorachote, P., Nimmannit, U., Wang, L., Stehlik, C., Lu, B., Azad, N., and Rojanasakul, Y. (2005). Nitric oxide negatively regulates fas cd95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of flice inhibitory protein. J. Biol. Chem. 280, 42044–42050.PubMedCrossRefGoogle Scholar
  23. Choi, B.M., Pae, H.O., Jang, S.I., Kim, Y.M., and Chung, H.T. (2002). Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol. 35, 116–126.PubMedCrossRefGoogle Scholar
  24. Chung, P., Cook, T., Liu, K., Vodovotz, Y., Zamora, R., Finkelstein, S., Billiar, T., and Blumberg, D. (2003). Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide 8, 119–126.PubMedCrossRefGoogle Scholar
  25. Condeelis, J. and Pollard, J.W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266.PubMedCrossRefGoogle Scholar
  26. Coulter, J.A., McCarthy, H.O., Xiang, J., Roedl, W., Wagner, E., Robson, T., and Hirst, D.G. (2008). Nitric oxide – a novel therapeutic for cancer. Nitric Oxide 19, 192–198.PubMedCrossRefGoogle Scholar
  27. Noble, D.R., Swift, H.R., and Williams., D.L.H. (1999). Nitric oxide release from s-nitrosoglutathione (gsno). Chem. Commun. 2317–2318.Google Scholar
  28. Dash, P.R., McCormick, J., Thomson, M.J., Johnstone, A.P., Cartwright, J.E., and Whitley, G.S. (2007). Fas ligand-induced apoptosis is regulated by nitric oxide through the inhibition of fas receptor clustering and the nitrosylation of protein kinase cepsilon. Exp. Cell Res. 313, 3421–3431.PubMedCrossRefGoogle Scholar
  29. De Nadai, C., Sestili, P., Cantoni, O., Lievremont, J.P., Sciorati, C., Barsacchi, R., Moncada, S., Meldolesi, J., and Clementi, E. (2000). Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide. Proc. Natl. Acad. Sci. USA 97, 5480–5485.PubMedCrossRefGoogle Scholar
  30. Decker, N.K., Abdelmoneim, S.S., Yaqoob, U., Hendrickson, H., Hormes, J., Bentley, M., Pitot, H., Urrutia, R., Gores, G.J., and Shah, V.H. (2008). Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. Am. J. Pathol. 173, 1002–1012.PubMedCrossRefGoogle Scholar
  31. Dilla, T., Velasco, J.A., Medina, D.L., Gonzalez-Palacios, J.F., and Santisteban, P. (2000). The mdm2 oncoprotein promotes apoptosis in p53-deficient human medullary thyroid carcinoma cells. Endocrinology 141, 420–429.PubMedCrossRefGoogle Scholar
  32. Dimmeler, S., Breitschopf, K., Haendeler, J., and Zeiher, A.M. (1999). Dephosphorylation targets bcl-2 for ubiquitin-dependent degradation: A link between the apoptosome and the proteasome pathway. J. Exp. Med. 189, 1815–1822.PubMedCrossRefGoogle Scholar
  33. Dunlap, T., Abdul-Hay, S.O., Chandrasena, R.E., Hagos, G.K., Sinha, V., Wang, Z., Wang, H., and Thatcher, G.R. (2008). Nitrates and no-nsaids in cancer chemoprevention and therapy: In vitro evidence querying the no donor functionality. Nitric Oxide 19, 115–124.PubMedCrossRefGoogle Scholar
  34. Ekmekcioglu, S., Tang, C.H., and Grimm, E.A. (2005). No news is not necessarily good news in cancer. Curr Cancer Drug Targets 5, 103–115.PubMedCrossRefGoogle Scholar
  35. Engels, K., Knauer, S.K., Loibl, S., Fetz, V., Harter, P., Schweitzer, A., Fisseler-Eckhoff, A., Kommoss, F., Hanker, L., Nekljudova, V., Hermanns, I., Kleinert, H., Mann, W., du Bois, A., and Stauber, R.H. (2008). No signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Res. 68, 5159–5166.PubMedCrossRefGoogle Scholar
  36. Estrada, C., Gomez, C., Martin-Nieto, J., De Frutos, T., Jimenez, A., and Villalobo, A. (1997). Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase. Biochem. J. 326 (Pt 2), 369–376.PubMedGoogle Scholar
  37. Fei, X.F., Wang, B.X., Li, T.J., Tashiro, S., Minami, M., Xing, D.J., and Ikejima, T. (2003). Evodiamine, a constituent of evodiae fructus, induces anti-proliferating effects in tumor cells. Cancer Sci. 94, 92–98.PubMedCrossRefGoogle Scholar
  38. Ferrari, N., Morini, M., Pfeffer, U., Minghelli, S., Noonan, D.M., and Albini, A. (2003). Inhibition of kaposi’s sarcoma in vivo by fenretinide. Clin. Cancer Res. 9, 6020–6029.PubMedGoogle Scholar
  39. Ferrer, P., Asensi, M., Priego, S., Benlloch, M., Mena, S., Ortega, A., Obrador, E., Esteve, J.M., and Estrela, J.M. (2007). Nitric oxide mediates natural polyphenol-induced bcl-2 down-regulation and activation of cell death in metastatic b16 melanoma. J. Biol. Chem. 282, 2880–2890.PubMedCrossRefGoogle Scholar
  40. Ferrero, R., Rodriguez-Pascual, F., Miras-Portugal, M.T., and Torres, M. (1999). Comparative effects of several nitric oxide donors on intracellular cyclic gmp levels in bovine chromaffin cells, Correlation with nitric oxide production. Br. J. Pharmacol. 127, 779–787.PubMedCrossRefGoogle Scholar
  41. Fetz, V., Bier, C., Habtemichael, N., Schuon, R., Schweitzer, A., Kunkel, M., Engels, K., Kovacs, A.F., Schneider, S., Mann, W., Stauber, R.H., and Knauer, S.K. (2008). Inducible no synthase confers chemoresistance in head and neck cancer by modulating survivin. Int. J. Cancer 124, 2033–2041.CrossRefGoogle Scholar
  42. Frerart, F., Sonveaux, P., Rath, G., Smoos, A., Meqor, A., Charlier, N., Jordan, B.F., Saliez, J., Noel, A., Dessy, C., Gallez, B., and Feron, O. (2008). The acidic tumor microenvironment promotes the reconversion of nitrite into nitric oxide: towards a new and safe radiosensitizing strategy. Clin. Cancer Res. 14, 2768–2774.PubMedCrossRefGoogle Scholar
  43. Fukuzawa, K., Kogure, K., Morita, M., Hama, S., Manabe, S., and Tokumura, A. (2004). Enhancement of nitric oxide and superoxide generations by alpha-tocopheryl succinate and its apoptotic and anticancer effects. Biochemistry (Mosc) 69, 50–57.CrossRefGoogle Scholar
  44. Gao, J., Kashfi, K., Liu, X., and Rigas, B. (2006). No-donating aspirin induces phase ii enzymes in vitro and in vivo. Carcinogenesis 27, 803–810.PubMedCrossRefGoogle Scholar
  45. Gao, J., Kashfi, K., and Rigas, B. (2005). In vitro metabolism of nitric oxide-donating aspirin: The effect of positional isomerism. J. Pharmacol. Exp. Ther. 312, 989–997.PubMedCrossRefGoogle Scholar
  46. Garban, H.J. and Bonavida, B. (1999). Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol. Oncol. 73, 257–264.PubMedCrossRefGoogle Scholar
  47. Garban, H.J. and Bonavida, B. (2001). Nitric oxide inhibits the transcription repressor yin-yang 1 binding activity at the silencer region of the fas promoter: a pivotal role for nitric oxide in the up-regulation of fas gene expression in human tumor cells. J. Immunol. 167, 75–81.PubMedGoogle Scholar
  48. Ghosh, S., Maurya, D.K., and Krishna, M. (2008). Role of inos in bystander signaling between macrophages and lymphoma cells. Int. J. Radiat. Oncol. Biol. Phys. 72, 1567–1574.PubMedCrossRefGoogle Scholar
  49. Gonzalez-Fernandez, O., Jimenez, A., and Villalobo, A. (2008). Differential p38 mitogen-activated protein kinase-controlled hypophosphorylation of the retinoblastoma protein induced by nitric oxide in neuroblastoma cells. Free Radic. Biol. Med. 44, 353–366.PubMedCrossRefGoogle Scholar
  50. Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35.PubMedCrossRefGoogle Scholar
  51. Guastadisegni, C., Nicolini, A., Balduzzi, M., Ajmone-Cat, M.A., and Minghetti, L. (2002). Modulation of pge(2) and TNF alpha by nitric oxide and LPS-activated raw 264.7 cells. Cytokine 19, 175–180.PubMedCrossRefGoogle Scholar
  52. Hagemann, T., Lawrence, T., McNeish, I., Charles, K.A., Kulbe, H., Thompson, R.G., Robinson, S.C., and Balkwill, F.R. (2008). “Re-educating” Tumor-associated macrophages by targeting NF-kappab. J. Exp. Med. 205, 1261–1268.PubMedCrossRefGoogle Scholar
  53. Hahn, S. and Erb, P. (1999). The immunomodulatory role of cd4-positive cytotoxic t-lymphocytes in health and disease. Int. Rev. Immunol. 18, 449–464.PubMedCrossRefGoogle Scholar
  54. Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., Hester, L.D., Ferris, C.D., Hayward, S.D., Snyder, S.H., and Sawa, A. (2005). S-nitrosylated gapdh initiates apoptotic cell death by nuclear translocation following siah1 binding. Nat. Cell Biol. 7, 665–674.PubMedCrossRefGoogle Scholar
  55. Harris, S.R., Schoeffner, D.J., Yoshiji, H., and Thorgeirsson, U.P. (2002). Tumor growth enhancing effects of vascular endothelial growth factor are associated with increased nitric oxide synthase activity and inhibition of apoptosis in human breast carcinoma xenografts. Cancer Lett. 179, 95–101.PubMedCrossRefGoogle Scholar
  56. Hirakawa, M., Oike, M., Masuda, K., and Ito, Y. (2002). Tumor cell apoptosis by irradiation-induced nitric oxide production in vascular endothelium. Cancer Res. 62, 1450–1457.PubMedGoogle Scholar
  57. Hirst, D. and Robson, T. (2007). Targeting nitric oxide for cancer therapy. J. Pharm. Pharmacol. 59, 3–13.PubMedCrossRefGoogle Scholar
  58. Hofseth, L.J. (2008). Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett. 268, 10–30.PubMedCrossRefGoogle Scholar
  59. Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264, 13963–13966.PubMedGoogle Scholar
  60. Huang, J., Tatsumi, T., Pizzoferrato, E., Vujanovic, N., and Storkus, W.J. (2005). Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. 65, 8461–8470.PubMedCrossRefGoogle Scholar
  61. Huerta-Yepez, S., Vega, M., Escoto-Chavez, S.E., Murdock, B., Sakai, T., Baritaki, S., and Bonavida, B. (2009). Nitric oxide sensitizes tumor cells to trail-induced apoptosis via inhibition of the dr5 transcription repressor yin yang 1. Nitric Oxide 20, 39–52.PubMedCrossRefGoogle Scholar
  62. Huerta, S., Chilka, S., and Bonavida, B. (2008). Nitric oxide donors: Novel cancer therapeutics (review). Int. J. Oncol. 33, 909–927.PubMedGoogle Scholar
  63. Ignarro, L.J., Lippton, H., Edwards, J.C., Baricos, W.H., Hyman, A.L., Kadowitz, P.J., and Gruetter, C.A. (1981). Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of s-nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 218, 739–749.PubMedGoogle Scholar
  64. Jeannin, J.F., Leon, L., Cortier, M., Sassi, N., Paul, C., and Bettaieb, A. (2008). Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide 19, 158–163.PubMedCrossRefGoogle Scholar
  65. Jeon, H.K., Choi, S.U., and Jung, N.P. (2005). Association of the erk1/2 and p38 kinase pathways with nitric oxide-induced apoptosis and cell cycle arrest in colon cancer cells. Cell Biol. Toxicol. 21, 115–125.PubMedCrossRefGoogle Scholar
  66. Kashfi, K. and Rigas, B. (2005). Molecular targets of nitric-oxide-donating aspirin in cancer. Biochem. Soc. Trans. 33, 701–704.PubMedCrossRefGoogle Scholar
  67. Kashiwagi, S., Tsukada, K., Xu, L., Miyazaki, J., Kozin, S.V., Tyrrell, J.A., Sessa, W.C., Gerweck, L.E., Jain, R.K., and Fukumura, D. (2008). Perivascular nitric oxide gradients normalize tumor vasculature. Nat. Med. 14, 255–257.PubMedCrossRefGoogle Scholar
  68. Keefer, L.K., Nims, R.W., Davies, K.M., and Wink, D.A. (1996). “Nonoates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms. Methods Enzymol. 268, 281–293.PubMedCrossRefGoogle Scholar
  69. Kherrouche, Z., Blais, A., Ferreira, E., De Launoit, Y., and Monte, D. (2006). Ask-1 (apoptosis signal-regulating kinase 1) is a direct e2f target gene. Biochem. J. 396, 547–556.PubMedCrossRefGoogle Scholar
  70. Kim, J.H., Tanabe, T., Chodak, G.W., and Rukstalis, D.B. (1995). In vitro anti-invasive effects of n-(4-hydroxyphenyl)-retinamide on human prostatic adenocarcinoma. Anticancer Res. 15, 1429–1434.PubMedGoogle Scholar
  71. Kim, K.M., Kim, P.K., Kwon, Y.G., Bai, S.K., Nam, W.D., and Kim, Y.M. (2002). Regulation of apoptosis by nitrosative stress. J. Biochem. Mol. Biol. 35, 127–133.PubMedCrossRefGoogle Scholar
  72. Kim, P.K., Zamora, R., Petrosko, P., and Billiar, T.R. (2001). The regulatory role of nitric oxide in apoptosis. Int. Immunopharmacol. 1, 1421–1441.PubMedCrossRefGoogle Scholar
  73. Kim, Y.M., Chung, H.T., Simmons, R.L., and Billiar, T.R. (2000). Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J. Biol. Chem. 275, 10954–10961.PubMedCrossRefGoogle Scholar
  74. Kim, Y.M., Kim, T.H., Seol, D.W., Talanian, R.V., and Billiar, T.R. (1998). Nitric oxide suppression of apoptosis occurs in association with an inhibition of bcl-2 cleavage and cytochrome c release. J. Biol. Chem. 273, 31437–31441.PubMedCrossRefGoogle Scholar
  75. Kim, Y.M., Talanian, R.V., and Billiar, T.R. (1997). Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 272, 31138–31148.PubMedCrossRefGoogle Scholar
  76. Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E.M., Raje, N., Catley, L., Li, C.Q., Trudel, L.J., Yasui, H., Vallet, S., Kutok, J.L., Chauhan, D., Mitsiades, C.S., Saavedra, J.E., Wogan, G.N., Keefer, L.K., Shami, P.J., and Anderson, K.C. (2007). Js-k, a gst-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110, 709–718.PubMedCrossRefGoogle Scholar
  77. Kolb, J.P. (2000). Mechanisms involved in the pro- and anti-apoptotic role of no in human leukemia. Leukemia 14, 1685–1694.PubMedCrossRefGoogle Scholar
  78. Kotamraju, S., Williams, C.L., and Kalyanaraman, B. (2007). Statin-induced breast cancer cell death: Role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 67, 7386–7394.PubMedCrossRefGoogle Scholar
  79. Kuntscher, M.V., Juran, S., Menke, H., Gebhard, M.M., Erdmann, D., and Germann, G. (2002). The role of pre-ischaemic application of the nitric oxide donor spermine/nitric oxide complex in enhancing flap survival in a rat model. Br. J. Plast Surg. 55, 430–433.PubMedCrossRefGoogle Scholar
  80. Kusama, T., Mukai, M., Iwasaki, T., Tatsuta, M., Matsumoto, Y., Akedo, H., Inoue, M., and Nakamura, H. (2002). 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 122, 308–317.PubMedCrossRefGoogle Scholar
  81. LaCasse, E.C., Baird, S., Korneluk, R.G., and MacKenzie, A.E. (1998). The inhibitors of apoptosis (iaps) and their emerging role in cancer. Oncogene 17, 3247–3259.PubMedCrossRefGoogle Scholar
  82. Lechner, M., Lirk, P., and Rieder, J. (2005). Inducible nitric oxide synthase (inos) in tumor biology: The two sides of the same coin. Semin. Cancer Biol. 15, 277–289.PubMedCrossRefGoogle Scholar
  83. Liao, C.H., Pan, S.L., Guh, J.H., Chang, Y.L., Pai, H.C., Lin, C.H., and Teng, C.M. (2005). Antitumor mechanism of evodiamine, a constituent from chinese herb evodiae fructus, in human multiple-drug resistant breast cancer nci/adr-res cells in vitro and in vivo. Carcinogenesis 26, 968–975.PubMedCrossRefGoogle Scholar
  84. Lim, S., Hung, A.C., and Porter, A.G. (2009). Focused pcr screen reveals p53 dependence of nitric oxide-induced apoptosis and up-regulation of maspin and plasminogen activator inhibitor-1 in tumor cells. Mol. Cancer Res. 7, 55–66.PubMedCrossRefGoogle Scholar
  85. MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350.PubMedCrossRefGoogle Scholar
  86. Mattace Raso, G., Esposito, E., Iacono, A., Pacilio, M., Coppola, A., Bianco, G., Diano, S., Di Carlo, R., and Meli, R. (2006). Leptin induces nitric oxide synthase type ii in c6 glioma cells. Role for nuclear factor-kappab in hormone effect. Neurosci. Lett. 396, 121–126.PubMedCrossRefGoogle Scholar
  87. McCarthy, H.O., Coulter, J.A., Robson, T., and Hirst, D.G. (2008). Gene therapy via inducible nitric oxide synthase: A tool for the treatment of a diverse range of pathological conditions. J. Pharm. Pharmacol. 60, 999–1017.PubMedCrossRefGoogle Scholar
  88. Medvedev, A.E., Johnsen, A.C., Haux, J., Steinkjer, B., Egeberg, K., Lynch, D.H., Sundan, A., and Espevik, T. (1997). Regulation of fas and fas-ligand expression in nk cells by cytokines and the involvement of fas-ligand in nk/lak cell-mediated cytotoxicity. Cytokine 9, 394–404.PubMedCrossRefGoogle Scholar
  89. Mendelsohn, J. and Baselga, J. (2000). The egf receptor family as targets for cancer therapy. Oncogene 19, 6550–6565.PubMedCrossRefGoogle Scholar
  90. Millet, A., Bettaieb, A., Renaud, F., Prevotat, L., Hammann, A., Solary, E., Mignotte, B., and Jeannin, J.F. (2002). Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123, 235–246.PubMedCrossRefGoogle Scholar
  91. Mocellin, S., Bronte, V., and Nitti, D. (2007). Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Med. Res. Rev. 27, 317–352.PubMedCrossRefGoogle Scholar
  92. Muerkoster, S., Wegehenkel, K., Arlt, A., Witt, M., Sipos, B., Kruse, M.L., Sebens, T., Kloppel, G., Kalthoff, H., Folsch, U.R., and Schafer, H. (2004). Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 64, 1331–1337.PubMedCrossRefGoogle Scholar
  93. Nicolas, A., Cathelin, D., Larmonier, N., Fraszczak, J., Puig, P.E., Bouchot, A., Bateman, A., Solary, E., and Bonnotte, B. (2007). Dendritic cells trigger tumor cell death by a nitric oxide-dependent mechanism. J. Immunol. 179, 812–818.PubMedGoogle Scholar
  94. Ogasawara, M. and Suzuki, H. (2004). Inhibition by evodiamine of hepatocyte growth factor-induced invasion and migration of tumor cells. Biol. Pharm. Bull. 27, 578–582.PubMedCrossRefGoogle Scholar
  95. Ogura, T., Tatemichi, M., and Esumi, H. (1997). TNF-alpha mediates inducible nitric oxide synthase expression in human neuroblastoma cell line by cisplatin. Biochem. Biophys. Res. Commun. 233, 788–791.PubMedCrossRefGoogle Scholar
  96. Ohno, S., Inagawa, H., Dhar, D.K., Fujii, T., Ueda, S., Tachibana, M., Suzuki, N., Inoue, M., Soma, G., and Nagasue, N. (2003a). The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res. 23, 5015–5022.PubMedGoogle Scholar
  97. Ohno, S., Ohno, Y., Suzuki, N., Inagawa, H., Kohchi, C., Soma, G., and Inoue, M. (2005). Multiple roles of cyclooxygenase-2 in endometrial cancer. Anticancer Res 25, 3679–3687.PubMedGoogle Scholar
  98. Ohno, S., Ohno, Y., Suzuki, N., Kamei, T., Koike, K., Inagawa, H., Kohchi, C., Soma, G., and Inoue, M. (2004). Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res. 24, 3335–3342.PubMedGoogle Scholar
  99. Ohno, S., Suzuki, N., Ohno, Y., Inagawa, H., Soma, G., and Inoue, M. (2003b). Tumor-associated macrophages: Foe or accomplice of tumors? Anticancer Res. 23, 4395–4409.PubMedGoogle Scholar
  100. Olson, M.V., Lee, J., Zhang, F., Wang, A., and Dong, Z. (2006). Inducible nitric oxide synthase activity is essential for inhibition of prostatic tumor growth by interferon-beta gene therapy. Cancer Gene Ther. 13, 676–685.PubMedCrossRefGoogle Scholar
  101. Olson, S.Y. and Garban, H.J. (2008). Regulation of apoptosis-related genes by nitric oxide in cancer. Nitric Oxide 19, 170–176.PubMedCrossRefGoogle Scholar
  102. Ono, M. and Kuwano, M. (2006). Molecular mechanisms of epidermal growth factor receptor (egfr) activation and response to gefitinib and other egfr-targeting drugs. Clin. Cancer Res. 12, 7242–7251.PubMedCrossRefGoogle Scholar
  103. Ouyang, N., Williams, J.L., Tsioulias, G.J., Gao, J., Iatropoulos, M.J., Kopelovich, L., Kashfi, K., and Rigas, B. (2006). Nitric oxide-donating aspirin prevents pancreatic cancer in a hamster tumor model. Cancer Res. 66, 4503–4511.PubMedCrossRefGoogle Scholar
  104. Pae, H.O., Choi, B.M., Oh, G.S., Lee, M.S., Ryu, D.G., Rhew, H.Y., Kim, Y.M., and Chung, H.T. (2004). Roles of heme oxygenase-1 in the antiproliferative and antiapoptotic effects of nitric oxide on jurkat t cells. Mol. Pharmacol. 66, 122–128.PubMedCrossRefGoogle Scholar
  105. Paragh, G., Kertai, P., Kovacs, P., Paragh, G., Jr., Fulop, P., and Foris, G. (2003). Hmg coa reductase inhibitor fluvastatin arrests the development of implanted hepatocarcinoma in rats. Anticancer Res. 23, 3949–3954.PubMedGoogle Scholar
  106. Perrotta, C., De Palma, C., Falcone, S., Sciorati, C., and Clementi, E. (2005). Nitric oxide, ceramide and sphingomyelinase-coupled receptors: A tale of enzymes and messengers coordinating cell death, survival and differentiation. Life Sci. 77, 1732–1739.PubMedCrossRefGoogle Scholar
  107. Pipili-Synetos, E., Papageorgiou, A., Sakkoula, E., Sotiropoulou, G., Fotsis, T., Karakiulakis, G., and Maragoudakis, M.E. (1995). Inhibition of angiogenesis, tumour growth and metastasis by the no-releasing vasodilators, isosorbide mononitrate and dinitrate. Br. J. Pharmacol. 116, 1829–1834.PubMedCrossRefGoogle Scholar
  108. Polytarchou, C., Hatziapostolou, M., Poimenidi, E., Mikelis, C., Papadopoulou, A., Parthymou, A., and Papadimitriou, E. (2009). Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase beta/zeta. Int. J. Cancer 124, 1785–1793.PubMedCrossRefGoogle Scholar
  109. Prakash, A. and Markham, A. (1999). Long-acting isosorbide mononitrate. Drugs 57, 93–99; discussion 100.PubMedCrossRefGoogle Scholar
  110. Quader, S.T., Bello-DeOcampo, D., Williams, D.E., Kleinman, H.K., and Webber, M.M. (2001). Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. 496, 153–161.PubMedCrossRefGoogle Scholar
  111. Rao, C.V., Reddy, B.S., Steele, V.E., Wang, C.X., Liu, X., Ouyang, N., Patlolla, J.M., Simi, B., Kopelovich, L., and Rigas, B. (2006). Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: Effects on molecular targets. Mol. Cancer Ther. 5, 1530–1538.PubMedCrossRefGoogle Scholar
  112. Ray, D. and Kiyokawa, H. (2007). Cdc25a levels determine the balance of proliferation and checkpoint response. Cell Cycle 6, 3039–3042.PubMedCrossRefGoogle Scholar
  113. Ridnour, L.A., Thomas, D.D., Donzelli, S., Espey, M.G., Roberts, D.D., Wink, D.A., and Isenberg, J.S. (2006). The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8, 1329–1337.PubMedCrossRefGoogle Scholar
  114. Rieder, J., Jahnke, R., Schloesser, M., Seibel, M., Czechowski, M., Marth, C., and Hoffmann, G. (2001). Nitric oxide-dependent apoptosis in ovarian carcinoma cell lines. Gynecol. Oncol. 82, 172–176.PubMedCrossRefGoogle Scholar
  115. Rigas, B. (2007). Novel agents for cancer prevention based on nitric oxide. Biochem. Soc. Trans. 35, 1364–1368.PubMedCrossRefGoogle Scholar
  116. Rigas, B. and Kashfi, K. (2004). Nitric-oxide-donating nsaids as agents for cancer prevention. Trends Mol. Med. 10, 324–330.PubMedCrossRefGoogle Scholar
  117. Rivoltini, L., Carrabba, M., Huber, V., Castelli, C., Novellino, L., Dalerba, P., Mortarini, R., Arancia, G., Anichini, A., Fais, S., and Parmiani, G. (2002). Immunity to cancer: Attack and escape in t lymphocyte-tumor cell interaction. Immunol. Rev. 188, 97–113.PubMedCrossRefGoogle Scholar
  118. Rosetti, M., Tesei, A., Ulivi, P., Fabbri, F., Vannini, I., Brigliadori, G., Amadori, D., Bolla, M., and Zoli, W. (2006). Molecular characterization of cytotoxic and resistance mechanisms induced by ncx 4040, a novel no-nsaid, in pancreatic cancer cell lines. Apoptosis 11, 1321–1330.PubMedCrossRefGoogle Scholar
  119. Ruano, M.J., Hernandez-Hernando, S., Jimenez, A., Estrada, C., and Villalobo, A. (2003). Nitric oxide-induced epidermal growth factor-dependent phosphorylations in a431 tumour cells. Eur. J. Biochem. 270, 1828–1837.PubMedCrossRefGoogle Scholar
  120. Saavedra, J.E., Shami, P.J., Wang, L.Y., Davies, K.M., Booth, M.N., Citro, M.L., and Keefer, L.K. (2000). Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: In vitro antileukemic activity. J. Med. Chem. 43, 261–269.PubMedCrossRefGoogle Scholar
  121. Saddoughi, S.A., Song, P., and Ogretmen, B. (2008). Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem. 49, 413–440.PubMedCrossRefGoogle Scholar
  122. Salvucci, O., Carsana, M., Bersani, I., Tragni, G., and Anichini, A. (2001). Antiapoptotic role of endogenous nitric oxide in human melanoma cells. Cancer Res. 61, 318–326.PubMedGoogle Scholar
  123. Shami, P.J., Saavedra, J.E., Wang, L.Y., Bonifant, C.L., Diwan, B.A., Singh, S.V., Gu, Y., Fox, S.D., Buzard, G.S., Citro, M.L., Waterhouse, D.J., Davies, K.M., Ji, X., and Keefer, L.K. (2003). Js-k, a glutathione/glutathione s-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol. Cancer Ther. 2, 409–417.PubMedGoogle Scholar
  124. Sharp, R.M., Bello-DeOcampo, D., Quader, S.T., and Webber, M.M. (2001). N-(4-hydroxyphenyl)retinamide (4-hpr) decreases neoplastic properties of human prostate cells: An agent for prevention. Mutat. Res. 496, 163–170.PubMedCrossRefGoogle Scholar
  125. Shieh, Y.S., Hung, Y.J., Hsieh, C.B., Chen, J.S., Chou, K.C., and Liu, S.Y. (2009). Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann. Surg. Oncol. 16, 751–760.PubMedCrossRefGoogle Scholar
  126. Sica, A., Schioppa, T., Mantovani, A., and Allavena, P. (2006). Tumour-associated macrophages are a distinct m2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727.PubMedCrossRefGoogle Scholar
  127. Simeone, A.M., Colella, S., Krahe, R., Johnson, M.M., Mora, E., and Tari, A.M. (2006). N-(4-hydroxyphenyl)retinamide and nitric oxide pro-drugs exhibit apoptotic and anti-invasive effects against bone metastatic breast cancer cells. Carcinogenesis 27, 568–577.PubMedCrossRefGoogle Scholar
  128. Simeone, A.M., Ekmekcioglu, S., Broemeling, L.D., Grimm, E.A., and Tari, A.M. (2002). A novel mechanism by which n-(4-hydroxyphenyl)retinamide inhibits breast cancer cell growth: The production of nitric oxide. Mol. Cancer Ther. 1, 1009–1017.PubMedGoogle Scholar
  129. Sivaprasad, U., Abbas, T., and Dutta, A. (2006). Differential efficacy of 3-hydroxy-3-methylglutaryl coa reductase inhibitors on the cell cycle of prostate cancer cells. Mol. Cancer Ther. 5, 2310–2316.PubMedCrossRefGoogle Scholar
  130. Sordella, R., Bell, D.W., Haber, D.A., and Settleman, J. (2004). Gefitinib-sensitizing egfr mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167.PubMedCrossRefGoogle Scholar
  131. Subbarayan, P.R., Wang, P.G., Lampidis, T.J., Ardalan, B., and Braunschweiger, P. (2008). Differential expression of glut 1 mrna and protein levels correlates with increased sensitivity to the glyco-conjugated nitric oxide donor (2-glu-snap) in different tumor cell types. J. Chemother. 20, 106–111.PubMedGoogle Scholar
  132. Suliman, A., Lam, A., Datta, R., and Srivastava, R.K. (2001). Intracellular mechanisms of trail: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 20, 2122–2133.PubMedCrossRefGoogle Scholar
  133. Tanaka, S., Akaike, T., Fang, J., Beppu, T., Ogawa, M., Tamura, F., Miyamoto, Y., and Maeda, H. (2003). Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br. J. Cancer 88, 902–909.PubMedCrossRefGoogle Scholar
  134. Tarr, J.M., Eggleton, P., and Winyard, P.G. (2006). Nitric oxide and the regulation of apoptosis in tumour cells. Curr. Pharm. Des. 12, 4445–4468.PubMedCrossRefGoogle Scholar
  135. Tesei, A., Zoli, W., Fabbri, F., Leonetti, C., Rosetti, M., Bolla, M., Amadori, D., and Silvestrini, R. (2008). Ncx 4040, an no-donating acetylsalicylic acid derivative: Efficacy and mechanisms of action in cancer cells. Nitric Oxide 19, 225–236.PubMedCrossRefGoogle Scholar
  136. Tomko, R.J., Jr. and Lazo, J.S. (2008). Multimodal control of cdc25a by nitrosative stress. Cancer Res. 68, 7457–7465.PubMedCrossRefGoogle Scholar
  137. Torok, N.J., Higuchi, H., Bronk, S., and Gores, G.J. (2002). Nitric oxide inhibits apoptosis downstream of cytochrome c release by nitrosylating caspase 9. Cancer Res. 62, 1648–1653.PubMedGoogle Scholar
  138. Tsujimoto, Y. and Shimizu, S. (2000). Bcl-2 family: Life-or-death switch. FEBS Lett. 466, 6–10.PubMedCrossRefGoogle Scholar
  139. Udupi, V., Yu, M., Malaviya, S., Saavedra, J.E., and Shami, P.J. (2006). Js-k, a nitric oxide prodrug, induces cytochrome c release and caspase activation in hl-60 myeloid leukemia cells. Leuk. Res. 30, 1279–1283.PubMedCrossRefGoogle Scholar
  140. Um, S.J., Lee, S.Y., Kim, E.J., Han, H.S., Koh, Y.M., Hong, K.J., Sin, H.S., and Park, J.S. (2001). Antiproliferative mechanism of retinoid derivatives in ovarian cancer cells. Cancer Lett. 174, 127–134.PubMedCrossRefGoogle Scholar
  141. Vadrot, N., Legrand, A., Nello, E., Bringuier, A.F., Guillot, R., and Feldmann, G. (2006). Inducible nitric oxide synthase (inos) activity could be responsible for resistance or sensitivity to IFN-gamma-induced apoptosis in several human hepatoma cell lines. J. Interferon. Cytokine Res. 26, 901–913.PubMedCrossRefGoogle Scholar
  142. Vasilev, S., Vucevic D., Gasic S., Majstrovic I., Vasilijic S., Cupic V., and Colic M. (2008). The effect of a new nitro-aspirin on apoptosis of neutrophil granulocytes. Acta Veterinaria (Beograd) 58, 449–457.Google Scholar
  143. Verhoef, C., de Wilt, J.H., Grunhagen, D.J., van Geel, A.N., ten Hagen, T.L., and Eggermont, A.M. (2007). Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr. Treat Options Oncol. 8, 417–427.PubMedCrossRefGoogle Scholar
  144. Webber, M.M., Bello-DeOcampo, D., Quader, S., Deocampo, N.D., Metcalfe, W.S., and Sharp, R.M. (1999). Modulation of the malignant phenotype of human prostate cancer cells by n-(4-hydroxyphenyl)retinamide (4-hpr). Clin. Exp. Metastasis 17, 255–263.PubMedCrossRefGoogle Scholar
  145. Weigert, A. and Brune, B. (2008). Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 19, 95–102.PubMedCrossRefGoogle Scholar
  146. Wenzel, U., Kuntz, S., De Sousa, U.J., and Daniel, H. (2003). Nitric oxide suppresses apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Int. J. Cancer 106, 666–675.PubMedCrossRefGoogle Scholar
  147. Williams, J.L., Nath, N., Chen, J., Hundley, T.R., Gao, J., Kopelovich, L., Kashfi, K., and Rigas, B. (2003). Growth inhibition of human colon cancer cells by nitric oxide (no)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/t-cell factor signaling, nuclear factor-kappab, and no synthase 2 inhibition: Implications for chemoprevention. Cancer Res. 63, 7613–7618.PubMedGoogle Scholar
  148. Wink, D.A., Ridnour, L.A., Hussain, S.P., and Harris, C.C. (2008). The reemergence of nitric oxide and cancer. Nitric Oxide 19, 65–67.PubMedCrossRefGoogle Scholar
  149. Xie, K., Wang, Y., Huang, S., Xu, L., Bielenberg, D., Salas, T., McConkey, D.J., Jiang, W., and Fidler, I.J. (1997). Nitric oxide-mediated apoptosis of k-1735 melanoma cells is associated with downregulation of bcl-2. Oncogene 15, 771–779.PubMedCrossRefGoogle Scholar
  150. Yamamoto, T. and Bing, R.J. (2000). Nitric oxide donors. Proc. Soc. Exp. Biol. Med. 225, 200–206.PubMedCrossRefGoogle Scholar
  151. Yang, J., Wu, L.J., Tashino, S., Onodera, S., and Ikejima, T. (2008)a. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma hela cells. Free Radic. Res. 42, 492–504.PubMedCrossRefGoogle Scholar
  152. Yang, J., Wu, L.J., Tashiro, S., Onodera, S., and Ikejima, T. (2008)b. Nitric oxide activated by p38 and nf-kappab facilitates apoptosis and cell cycle arrest under oxidative stress in evodiamine-treated human melanoma a375-s2 cells. Free Radic. Res. 42, 1–11.PubMedCrossRefGoogle Scholar
  153. Yasuda, H. (2008). Solid tumor physiology and hypoxia-induced chemo/radio-resistance: Novel strategy for cancer therapy: Nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19, 205–216.PubMedCrossRefGoogle Scholar
  154. Ye, J., Cippitelli, M., Dorman, L., Ortaldo, J.R., and Young, H.A. (1996a). The nuclear factor yy1 suppresses the human gamma interferon promoter through two mechanisms: Inhibition of ap1 binding and activation of a silencer element. Mol. Cell. Biol. 16, 4744–4753.PubMedGoogle Scholar
  155. Ye, J., Young, H.A., Zhang, X., Castranova, V., Vallyathan, V., and Shi, X. (1999). Regulation of a cell type-specific silencer in the human interleukin-3 gene promoter by the transcription factor yy1 and an ap2 sequence-recognizing factor. J. Biol. Chem. 274, 26661–26667.PubMedCrossRefGoogle Scholar
  156. Ye, J., Zhang, X., and Dong, Z. (1996b). Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter: An ap1 complex and an sp1-related complex transactivate the promoter activity that is suppressed by a yy1 complex. Mol. Cell Biol. 16, 157–167.PubMedGoogle Scholar
  157. Yoshiji, H., Harris, S.R., and Thorgeirsson, U.P. (1997). Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res. 57, 3924–3928.PubMedGoogle Scholar
  158. Zhang, N., Ahsan, M.H., Zhu, L., Sambucetti, L.C., Purchio, A.F., and West, D.B. (2005). Nf-kappab and not the mapk signaling pathway regulates gadd45beta expression during acute inflammation. J. Biol. Chem. 280, 21400–21408.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Gen-Ichiro Soma
    • 1
    • 2
    • 3
    Email author
  • Chie Kohchi
    • 1
    • 2
  • Hiroyuki Inagawa
    • 1
    • 2
  1. 1.Department of Integrated and Holistic Immunology, Faculty of MedicineKagawa UniversityKagawaJapan
  2. 2.Macrophi Inc.KagawaJapan
  3. 3.Institute for Health and ScienceTokushima Bunri UniversityTokushimaJapan

Personalised recommendations