Comparisons of Limb Structural Properties in Free-ranging Chimpanzees from Kibale, Gombe, Mahale, and Taï Communities

  • Kristian J. CarlsonEmail author
  • Richard W. Wrangham
  • Martin N. Muller
  • D. Rick Sumner
  • M. E. Morbeck
  • Toshisada Nishida
  • Atsushi Yamanaka
  • Christophe Boesch
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


Structural characteristics of limb bones provide insight into how an animal dynamically loads its limbs during life. Cause-and-effect relationships between loading and the osteogenic response it elicits are complex. In spite of such complexities, cross-sectional geometric properties can be useful indicators of locomotor repertoires. Typical comparisons use primates that are distinguished by broad habitual locomotor differences, usually with samples garnered from several museum collections. Intraspecific variability is difficult to investigate in such samples because knowledge of their behavior or life histories, which are tools for interpreting intraspecific variability, is limited. Clearly, intraspecific variation both in morphology and behavior/life history exists. Here we expand an ongoing effort toward understanding intraspecific variation in limb structural properties by comparing free-ranging chimpanzees that have associated behavioral and life history data. Humeral and femoral data from 11 adult chimpanzees (Pan troglodytes) of Kibale National Park (Uganda) are compared to 29 adult chimpanzees from Gombe (Tanzania), Mahale Mountains (Tanzania), and Taï Forest (Côte d’Ivoire) National Park communities. Overall, limb structural morphology of Kibale chimpanzees most resembles limb structural morphology of Mahale chimpanzees. Shape ratios and percentage cortical areas of Kibale chimpanzees are most similar to non-Gombe chimpanzees, while Kibale structural properties, e.g., maximum rigidity, are most similar to non-Taï structural properties. Even after adding Kibale females, Taï females continue to stand out from females in other communities.


Cross-sectional geometry Functional morphology Locomotor ­behavior Pan troglodytes 



analysis of variance




body mass


percentage cortical area of cross sections


cortical area




supero-inferior diameter of the femoral head






maximum diameter of the humeral head


maximum/minimum rigidity (principal moments of area) I x /I y second moments of area about anatomical planes






bone length


least significant difference






region of interest


normalized I max (maximal rigidity)


standard deviation




total cross-sectional area


volume of interest


  1. Becquet C, Patterson N, Stone AC, Przeworksi M, Reich D (2007) Genetic structure of chimpanzee populations. PLoS Genetics 3, e66.Google Scholar
  2. Bhatavadekar NB, Daegling DJ, Rapoff AJ (2006) Application of an image-based weighted measure of skeletal loading stiffness to great ape mandibles. Am J Phys Anthropol 131:243–251.PubMedCrossRefGoogle Scholar
  3. Biewener AA (2003) Animal Locomotion. Oxford University Press, Oxford.Google Scholar
  4. Boesch C, Boesch-Achermann H (2000) The Chimpanzees of the Taï Forest – Behavioural Ecology and Evolution. Oxford University Press, New York.Google Scholar
  5. Burr DB, Piotrowski G, Martin RB, Cook PN (1982) Femoral mechanics in the lesser bushbaby (Galago senegalensis): structural adaptations to leaping in primates. Anat Rec 202:419–429.PubMedCrossRefGoogle Scholar
  6. Burr DB, Ruff CB, Johnson C (1989) Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of macaque. Am J Phys Anthropol 79:357–367.PubMedCrossRefGoogle Scholar
  7. Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410.PubMedCrossRefGoogle Scholar
  8. Carlson KJ (2002) Shape and material properties of African pongid femora and humeri: their relationship to observed positional behaviors. PhD dissertation, Indiana University.Google Scholar
  9. Carlson KJ (2005) Investigating the form-function interface in African apes – relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses. Am J Phys Anthropol 127:312–334.PubMedCrossRefGoogle Scholar
  10. Carlson KJ, Demes B, Franz T (2005) Mediolateral forces associated with quadrupedal gaits of lemurids. J Zool (Lond) 266:261–273.CrossRefGoogle Scholar
  11. Carlson KJ, Doran-Sheehy DM, Hunt KD, Nishida T, Yamanaka A, Boesch C (2006) Locomotor behavior and long bone morphology in individual free-ranging chimpanzees. J Hum Evol 50:394–404.PubMedCrossRefGoogle Scholar
  12. Carlson KJ, Grine FE, Pearson OM (2007) Robusticity and sexual dimorphism in the postcranium of modern hunter-gatherers from Australia. Am J Phys Anthropol 134:9–23.PubMedCrossRefGoogle Scholar
  13. Carlson KJ, Judex S (2007) Increased non-linear locomotion alters diaphyseal bone shape. J Exp Biol 210:3117–3125.PubMedCrossRefGoogle Scholar
  14. Carlson KJ, Sumner DR, Morbeck ME, Nishida T, Yamanaka A, Boesch C (2008) The role of non-behavioral factors in adjusting long bone diaphyseal structure in free-ranging chimpanzees. Int J Primatol 29:1401–1420.PubMedCrossRefGoogle Scholar
  15. Carter ML, Pontzer H, Wrangham RW, Kerbis Peterhans J (2008) Skeletal pathology in Pan troglodytes schweinfurthii in Kibale National Park, Uganda. Am J Phys Anthropol 135:389–403.CrossRefGoogle Scholar
  16. Chapman CA, Chapman LJ, Wrangham R, Isabirye-Basuta G, Ben-David K (1997) Spatial and temporal variability in the structure of a tropical forest Afr J Ecol 35:287–302.CrossRefGoogle Scholar
  17. Currey JD (2002) Bones: Structure and Mechanics. Princeton University Press, Princeton, NJ.Google Scholar
  18. Demes B, Jungers WL (1989) Functional differentiation of long bones in Lorises. Folia Primatol 52:58–69.PubMedCrossRefGoogle Scholar
  19. Demes B, Jungers WL, Selpien K (1991) Body size, locomotion, and long bone cross-sectional geometry in Indriid primates. Am J Phys Anthropol 86:537–547.PubMedCrossRefGoogle Scholar
  20. Demes B, Jungers WL (1993) Long bone cross-sectional dimensions, locomotor adaptations and body size in prosimian primates. J Hum Evol 25:57–74.CrossRefGoogle Scholar
  21. Demes B, Stern JT, Hausman MR, Larson SG, McLeod KJ, Rubin CT (1998) Patterns of strain in the Macaque ulna during functional activity. Am J Phys Anthropol 106:87–100.PubMedCrossRefGoogle Scholar
  22. Demes B, Qin Y, Stern JT Jr, Larson SG, Rubin CT (2001) Patterns of strain in the Macaque tibia during functional activity. Am J Phys Anthropol 116:257–265.PubMedCrossRefGoogle Scholar
  23. Demes B, Carlson KJ, Franz TM (2006) Cutting corners: the dynamics of turning behaviors in two primate species. J Exp Biol 209:927–937.PubMedCrossRefGoogle Scholar
  24. Demes B, Carlson KJ (2009) Locomotor variation and bending regimes of capuchin limb bones. Am J Phys Anthropol 139:558–571.Google Scholar
  25. Devlin MJ, Lieberman DE (2007) Variation in estradiol level affects cortical bone growth in response to mechanical loading in sheep. J Exp Biol 210:602–613.PubMedCrossRefGoogle Scholar
  26. Dial R, Bloodworth B, Lee A, Boyne P, Heys J (2004) The distribution of free space and its relation to canopy composition at six forest sites. Forest Sci 50:312–325.Google Scholar
  27. Gentry AH, Emmons LH (1987) Geographical variation in fertility, phenology, and composition of the understory of Neotropical forests. Biotropica 19:216–227.CrossRefGoogle Scholar
  28. Goodall J (1986) The Chimpanzees of Gombe. The Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  29. Green DJ, Gordon AD, Richmond BG (2007) Limb-size proportions in Australopithecus afarensis and Australopithecus africanus. J Hum Evol 52:187–200.PubMedCrossRefGoogle Scholar
  30. Griffin NL (2008) Bone architecture of the hominin second proximal pedal phalanx: a preliminary investigation. J Hum Evol 54:162–168.PubMedCrossRefGoogle Scholar
  31. Gunji H, Shimizu D, Hosaka M, Huffman A, Kawanaka K, Matsumoto-Oda A, Nishida T (1998) Notes on some chimpanzee skeletons from the Mahale Mountains National Park, Tanzania. In: Nishida T (ed), Resource Use Patterns and Social Structure Among Chimpanzees. Nisshindo Printer, Kyoto, pp 113–130.Google Scholar
  32. Guy F, Brunet M, Schmittbuhl M, Viriot L (2003) New approaches in hominoid taxonomy: ­morphometrics. Am J Phys Anthropol 121:198–218.PubMedCrossRefGoogle Scholar
  33. Haeusler M, McHenry HM (2007) Evolutionary reversals of limb proportions in early hominids? Evidence from KNM-ER 3735 (Homo habilis). J Hum Evol 53:383–405.PubMedCrossRefGoogle Scholar
  34. Harms KE, Powers JS, Montgomery RA (2004) Variation in small sapling density, understory cover, and resource availability in four Neotropical forests. Biotropica 36:40–51.Google Scholar
  35. Holt B (2003) Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb. Am J Phys Anthropol 122:200–215.PubMedCrossRefGoogle Scholar
  36. Hunt KD (1992) Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. Am J Phys Anthropol 87:83–105.CrossRefGoogle Scholar
  37. Hunt KD, McGrew WC (2002) Chimpanzees in the dry habitats of Assirik, Senegal and Semliki Wildlife Reserve, Uganda. In: Boesch C, Hohmann G, Marchant LF (eds), Behavioural Diversity in Chimpanzees and Bonobos. Cambridge University Press, Cambridge, pp 35–51.CrossRefGoogle Scholar
  38. Jungers WL, Burr DB, Cole MS (1998) Body size and scaling of long bone geometry, bone strength, and positional behavior in cercopithecoid primates. In: Strasser E, Fleagle J, Rosenberger A, McHenry HM (eds), Primate Locomotion – Recent Advances. Plenum Press, New York, pp 309–330.Google Scholar
  39. Lieberman DE, Polk JD, Demes B (2004) Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol 123:156–171.PubMedCrossRefGoogle Scholar
  40. Lockwood CA, Kimbel WH, Lynch JM (2004) Morphometrics and hominoid phylogeny: support for a chimpanzee-human clade and differentiation among great ape subspecies. PNAS 101:4356–4360.PubMedCrossRefGoogle Scholar
  41. Madar SI, Rose MD, Kelley J, MacLatchy L, Pilbeam D (2002) New Sivapithecus postcranial specimens from the Siwaliks of Pakistan. J Hum Evol 42:705–752.PubMedCrossRefGoogle Scholar
  42. Marchi D, Sparacello VS, Holt BM, Formicola V (2006) Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy. Am J Phys Anthropol 131:447–455.CrossRefGoogle Scholar
  43. Marchi D (2007) Relative strength of the tibia and fibula and locomotor behavior in hominoids. J Hum Evol 53:647–655.PubMedCrossRefGoogle Scholar
  44. Martin RB, Burr DB, Sharkey NA (1998) Skeletal Tissue Mechanics. Springer-Verlag, New York.Google Scholar
  45. Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718.CrossRefGoogle Scholar
  46. Morbeck ME, Zihlman AL, Sumner DR, Galloway A (1991) Poliomyelitis and skeletal asymmetry in Gombe chimpanzees. Primates 32:77–91.CrossRefGoogle Scholar
  47. Morbeck ME (1999) Life history of Gombe chimpanzees: the inside view from the skeleton. In: Strum SC, Lindburg DG, Hamburg D (eds), The New Physical Anthropology: Science, Humanism, and Critical Reflection. Prentice-Hall, Upper Saddle River, NJ, pp 18–31.Google Scholar
  48. Morbeck ME, Galloway A, Sumner DR (2002) Getting old at Gombe: skeletal aging in ­wild-ranging chimpanzees. In: Erwin J, Hof PR (eds), Aging in Nonhuman Primates Interdisciplinary Topics in Gerontology, Vol. 31. Karger, Basel/New York, pp 48–62.Google Scholar
  49. Nagurka ML, Hayes WC (1980) An interactive graphics package for calculating cross-sectional properties of complex shapes. J Biomech 13:59–64.PubMedCrossRefGoogle Scholar
  50. Nishida T (1990) The Chimpanzees of the Mahale Mountains – Sexual and Life History strategies. University of Tokyo Press, Tokyo.Google Scholar
  51. Ohman JC (1993) Cross-sectional geometric properties from biplanar radiographs and computed tomography: functional application to the humerus and femur in hominoids. PhD dissertation, Kent State University.Google Scholar
  52. Pearson OM, Lieberman DE (2004) The aging of Wolff’s “Law”: ontogeny and responses to mechanical loading in cortical bone. Yrbk Phys Anthropol 47:63–99.CrossRefGoogle Scholar
  53. Polk JD, Demes B, Jungers WL, Biknevicius AR, Heinrich RE, Runestad JA (2000) A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique? J Hum Evol 39:297–325.PubMedCrossRefGoogle Scholar
  54. Pusey AE, Oehlert GW, Williams JM, Goodall J (2005) Influences of ecological and social factors on body mass of wild chimpanzees. Int J Primatol 26:3–31.CrossRefGoogle Scholar
  55. Robling AG, Warden SJ, Shultz KL, Beamer WG, Turner CH (2007) Genetic effects on bone mechanotransduction in congenic mice harboring bone size and strength quantitative trait loci. J Bone Miner Res 22:984–991.PubMedCrossRefGoogle Scholar
  56. Ruff CB (1987) Structural allometry of the femur and tibia in Hominoidea and Macaca. Folia Primatol 48:9–49.PubMedCrossRefGoogle Scholar
  57. Ruff CB (1989) New approaches to structural evolution of limb bones in primates. Folia Primatol 53:142–159.PubMedCrossRefGoogle Scholar
  58. Ruff CB, Runestad JA (1992) Primate limb bone structural adaptations. Annu Rev Anthropol 21:407–433.CrossRefGoogle Scholar
  59. Ruff CB (1999) Skeletal structure and behavioral patterns of prehistoric Great Basin populations. In: Hemphill BE, Larsen CS (eds), Prehistoric Lifeways in the Great Basin Wetlands: Bioarchaeological Reconstruction and Interpretation. University of Utah Press, Salt Lake City, pp 290–320.Google Scholar
  60. Ruff CB (2002) Long bone articular and diaphyseal structure in Old World monkeys and apes I: Locomotor effects. Am J Phys Anthropol 119:305–342.PubMedCrossRefGoogle Scholar
  61. Ruff CB, Holt B, Trinkaus E (2006) Who’s afraid of the big bad Wolff?: “Wolff’s Law” and bone functional adaptation. Am J Phys Anthropol 129:484–498.PubMedCrossRefGoogle Scholar
  62. Ruff CB (2008) Femoral/humeral strength in early African Homo erectus. J Hum Evol 54:383–390.PubMedCrossRefGoogle Scholar
  63. Schaffler MB, Burr DB, Jungers WL, Ruff CB (1985) Structural and mechanical indicators of limb specialization in primates. Folia Primatol 45:61–75.PubMedCrossRefGoogle Scholar
  64. Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559.PubMedCrossRefGoogle Scholar
  65. Stock J, Pfeiffer S (2001) Linking structural variability in long bone diaphyses to habitual behaviors: foragers from southern African Later Stone Age and Andaman Islands. Am J Phys Anthropol 115:337–348.PubMedCrossRefGoogle Scholar
  66. Sumner DR, Morbeck ME, Lobick JJ (1989) Apparent age-related bone loss among adult female Gombe chimpanzees. Am J Phys Anthropol 79:225–234.PubMedCrossRefGoogle Scholar
  67. Sumner DR, Andriacchi TP (1996) Adaptation to differential loading: comparison of growth-related changes in cross-sectional properties of the human femur and humerus. Bone 19:121–126.PubMedCrossRefGoogle Scholar
  68. Swartz SM, Bertram JEA, Biewener AA (1989) Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons. Nature 342:270–272.PubMedCrossRefGoogle Scholar
  69. Terranova CJ (1995a) Functional morphology of leaping behaviors in galagids: associations between loading, limb use and diaphyseal geometry. In: Atterman L, Izard MK, Doyle GA (eds), Creatures of the Dark: the Nocturnal Prosimians. Plenum Press, New York, pp 473–493.Google Scholar
  70. Terranova CJ (1995b) Leaping behaviors and the functional morphology of strepsirhine primate long bones. Folia Primatol 65:181–201.Google Scholar
  71. Turner CH, Hsieh YF, Muller R, Bouxsein ML, Baylink DJ, Rosen CJ, Grynpas MD, Donahue LR, Beamer WG (2000) Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res 15:1126–1131.PubMedCrossRefGoogle Scholar
  72. Wergedal JE, Sheng MH, Ackert-Bicknell CL, Beamer WG, Baylink DJ (2005) Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density. Bone 36:111–122.PubMedCrossRefGoogle Scholar
  73. Whitten A, Goodall J, McGrew WC, Nishida T, Reynolds V, Sugiyama Y, Tutin CEG, Wrangham RW, Boesch C (1999) Cultures in chimpanzees. Nature 399:682–685.CrossRefGoogle Scholar
  74. Xiong DH, Shen H, Xiao P, Guo YF, Long JR, Zhao LJ, Liu YZ, Deng HY, Li JL, Recker RR, Deng HW (2006) Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J Bone Miner Res 21:424–437.PubMedCrossRefGoogle Scholar
  75. Yamanaka A, Gunji H, Ishida H (2005) Curvature, length, and cross-sectional geometry of the femur and humerus in anthropoid primates. Am J Phys Anthropol 127:46–57.PubMedCrossRefGoogle Scholar
  76. Zihlman AL, Stahl D, Boesch C (2008) Morphological variation in adult chimpanzees (Pan ­troglodytes verus) of the Taï National Park, Côte d’Ivoire. Am J Phys Anthropol 135:34–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kristian J. Carlson
    • 1
    Email author
  • Richard W. Wrangham
  • Martin N. Muller
  • D. Rick Sumner
  • M. E. Morbeck
  • Toshisada Nishida
  • Atsushi Yamanaka
  • Christophe Boesch
  1. 1.Institute for Human EvolutionUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations