Mitochondrial Decay and Impairment of Antioxidant Defenses in Aging RPE Cells

  • Yuan He
  • Joyce Tombran-TinkEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment, partly due to elevated oxygen partial pressure from the choriocapillaris and to digestion of polyunsaturated fatty acid laden photoreceptor outer segments. Here we examined the vulnerability of RPE cells to stress and changes in their mitochondria with increased chronological aging and showed that there is greater sensitivity of the cells to oxidative stress, alterations in their mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity as a function of age. These features correlate with reduced cellular levels of ATP, ROS, and [Ca2+]c, lower Δψm, increased [Ca2+]m sequestration and decreased expression of mtHsp70, UCP2, and SOD3. Mitochondrial decay, bioenergetic deficiencies, and weakened antioxidant defenses in RPE cells occur as early as age 62. With increased severity, these conditions may significantly reduce RPE function in the retina and contribute to age related retinal anomalies.


Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Mitochondrial Permeability Transition Pore Mitochondrial Permeability Transition Pore Human Retinal Pigment Epithelium Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the Ben Franklin Foundation, PA, USA, the National Basic Research Program of China (No. 2007CB512200), and the National Natural Science Foundation of China (No.30672275, No.30400486), NEI Core Grant P30 EY01931 (PI, Janice M Burke), and by an unrestricted grant from Research to Prevent Blindness, Inc. to the Medical College of Wisconsin. The first author received support from the China Scholarship Council.


  1. Amer J, Goldfarb A, Fibach E (2003) Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol 70:84–90CrossRefPubMedGoogle Scholar
  2. Armstrong JS (2006) Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28:253–260CrossRefPubMedGoogle Scholar
  3. Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600CrossRefPubMedGoogle Scholar
  4. Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223CrossRefPubMedGoogle Scholar
  5. Beal MF (2007) Mitochondria and neurodegeneration. Novartis Found Symp 287:183–192 discussion 192–196CrossRefPubMedGoogle Scholar
  6. Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134CrossRefPubMedGoogle Scholar
  7. Beckman KB, Ames BN (1998) Mitochondrial aging: open questions. Ann NY Acad Sci 854:118–127CrossRefPubMedGoogle Scholar
  8. Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219CrossRefPubMedGoogle Scholar
  9. Bertoni-Freddari C, Balietti M, Giorgetti B et al (2008) Selective decline of the metabolic competence of oversized synaptic mitochondria in the old monkey cerebellum. Rejuvenation Res 11:387–391CrossRefPubMedGoogle Scholar
  10. Bertoni-Freddari C, Fattoretti P, Casoli T (1993) Morphological plasticity of synaptic mitochondria during aging. Brain Res 628:193–200CrossRefPubMedGoogle Scholar
  11. Bertoni-Freddari C, Fattoretti P, Casoli T et al (2001) Quantitative cytochemical mapping of mitochondrial enzymes in rat cerebella. Micron 32:405–410CrossRefPubMedGoogle Scholar
  12. Bertoni-Freddari C, Fattoretti P, Giorgetti B et al (2005) Age-related decline in metabolic competence of small and medium-sized synaptic mitochondria. Naturwissenschaften 92:82–85CrossRefPubMedGoogle Scholar
  13. Bertoni-Freddari C, Fattoretti P, Paoloni R et al (2003) Inverse correlation between mitochondrial size and metabolic competence: a quantitative cytochemical study of cytochrome oxidase activity. Naturwissenschaften 90:68–71PubMedGoogle Scholar
  14. Chen JH, Hales CN, Ozanne SE (2007) DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 35:7417–7428CrossRefPubMedGoogle Scholar
  15. Chen X, Stern D, Yan SD (2006) Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res 3:515–520CrossRefPubMedGoogle Scholar
  16. Czarna M, Jarmuszkiewicz W (2006) Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death. Postepy Biochem 52:145–156PubMedGoogle Scholar
  17. Dahlem YA, Wolf G, Siemen D et al (2006) Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics. Cell Calcium 39:387–400CrossRefPubMedGoogle Scholar
  18. D’Cruz PM, Yasumura D, Weir J et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651CrossRefPubMedGoogle Scholar
  19. Degli Esposti M (2002) Measuring mitochondrial reactive oxygen species. Methods 26:335–340CrossRefPubMedGoogle Scholar
  20. Deng X, Yin F, Lu X et al (2006) The apoptotic effect of brucine from the seed of Strychnos nux-vomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway. Toxicol Sci 91:59–69CrossRefPubMedGoogle Scholar
  21. Dorey CK, Wu G, Ebenstein D (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30:1691–1699PubMedGoogle Scholar
  22. Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death. J Physiol 16:1–17CrossRefGoogle Scholar
  23. Dunaief JL, Dentchev T, Ying GS et al (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442PubMedGoogle Scholar
  24. Eckert A, Hauptmann S, Scherping I et al (2008) Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5:157–159CrossRefPubMedGoogle Scholar
  25. Feher J, Kovacs I, Artico M et al (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993CrossRefPubMedGoogle Scholar
  26. Finsterer J (2007) Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu (UUR) mutation. Acta Neurol Scand 116:1–14CrossRefPubMedGoogle Scholar
  27. Gal A, Li Y, Thompson DA (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271CrossRefPubMedGoogle Scholar
  28. Gavin PD, Prescott M, Luff SE et al (2004) Cross-linking ATP synthase complexes in vivo eliminates mitochondrial cristae. J Cell Sci 117:2333–2343CrossRefPubMedGoogle Scholar
  29. Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 100:1519–1535PubMedGoogle Scholar
  30. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629CrossRefPubMedGoogle Scholar
  31. Green WR, McDonnell PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92:615–627PubMedGoogle Scholar
  32. Hageman GS, Luthert PJ, Victor Chong NH et al (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age related macular degeneration. Prog Retin Eye Res 20:705–732CrossRefPubMedGoogle Scholar
  33. Hauptmann S, Scherping I, Dröse S et al (2008) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging Feb 21 30(10):1574–1586CrossRefPubMedGoogle Scholar
  34. 34. Hayakawa N, Yokoyama H, Kato H et al (2008) Age-related alterations of oxidative stress markers in campal CA1 sector. Exp Mol Pathol May 20Google Scholar
  35. He Y, Ge J, Tombran-Tink J (2008b) Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci 49:4912–4922CrossRefPubMedGoogle Scholar
  36. He Y, Tombran-Tink J, Ge J et al (2008a) Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci 49:1447–1458CrossRefPubMedGoogle Scholar
  37. Inoue M, Sato EF, Nishikawa M (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505CrossRefPubMedGoogle Scholar
  38. Ishikawa K, Takenaga K, Akimoto M et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664CrossRefPubMedGoogle Scholar
  39. Jackson JG, Thayer SA (2006) Mitochondrial modulation of Ca2+-induced Ca2+-release in rat sensory neurons. J Neurophysiol 96:1093–1104CrossRefPubMedGoogle Scholar
  40. Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503CrossRefPubMedGoogle Scholar
  41. Jin GF, Hurst JS, Godley BF (2001) Rod outer segments mediate mitochondrial DNA damage and apoptosis in human retinal pigment epithelium. Curr Eye Res 23:11–19CrossRefPubMedGoogle Scholar
  42. Jin M, Yaung J, Kannan R et al (2005) Hepatocyte growth factor protects RPE cells from apoptosis induced by glutathione depletion. Invest Ophthalmol Vis Sci 46:4311–4319CrossRefPubMedGoogle Scholar
  43. Karbowski M, Kurono C, Wozniak M et al (1999) Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Med 26:396–409CrossRefPubMedGoogle Scholar
  44. Kimura K, Tanaka N, Nakamura N et al (2007) Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in caenorhabditis elegans. J Biol Chem 282:5910–5918CrossRefPubMedGoogle Scholar
  45. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447CrossRefPubMedGoogle Scholar
  46. Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159CrossRefPubMedGoogle Scholar
  47. Knott AB, Perkins G, Schwarzenbacher R et al (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518CrossRefPubMedGoogle Scholar
  48. Ko YH, Delannoy M, Hullihen J et al (2003) Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309CrossRefPubMedGoogle Scholar
  49. Koopman WJ, Verkaart S, Visch HJ et al (2007) Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol 293:C22–C29CrossRefPubMedGoogle Scholar
  50. Krieger C, Duchen MR (2002) Mitochondria, Ca2+ and neurodegenerative disease. Eur J Pharm. 447:177–188CrossRefGoogle Scholar
  51. Kwong JQ, Henning MS, Starkov AA et al (2007) The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179:1163–1177CrossRefPubMedGoogle Scholar
  52. Laguens R (1971) Morphometric study of myocardial mitochondria in the rat. J Cell Biol 48:673–676CrossRefPubMedGoogle Scholar
  53. Lane N (2006) Mitochondrial disease: powerhouse of disease. Nature 440:600–602CrossRefPubMedGoogle Scholar
  54. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403CrossRefPubMedGoogle Scholar
  55. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795CrossRefPubMedGoogle Scholar
  56. Mancuso C, Scapagini G, Currò D et al (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123CrossRefPubMedGoogle Scholar
  57. McKay BS, Burke JM (1994) Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res 213:85–92CrossRefPubMedGoogle Scholar
  58. Melov S (2004) Modeling mitochondrial function in aging neurons. Trends Neurosci 27:601–606CrossRefPubMedGoogle Scholar
  59. Mironov SL, Ivannikov MV, Johansson M (2005) [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 280:715–721PubMedGoogle Scholar
  60. Nordgaard CL, Karunadharma PP, Feng X et al (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2848–2855CrossRefPubMedGoogle Scholar
  61. Pamplona R, Barja G, Portero-Otín M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci 959:475–490CrossRefPubMedGoogle Scholar
  62. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513CrossRefPubMedGoogle Scholar
  63. Pavlovic J, Floros J, Phelps DS et al (2008) Differentiation of xenografted human fetal lung parenchyma. Early Hum Dev 84:181–193CrossRefPubMedGoogle Scholar
  64. Penfold PL, Madigan MC, Gillies MC et al (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20:385–414CrossRefPubMedGoogle Scholar
  65. Pätsi J, Kervinen M, Finel M et al (2008) Leber hereditary optic neuropathy mutations in the ND6 subunit of mitochondrial complex I affect ubiquinone reduction kinetics in a bacterial model of the enzyme. Biochem J 409:129–137CrossRefPubMedGoogle Scholar
  66. Reeve AK, Krishnan KJ, Turnbull DM (2008) Age related mitochondrial degenerative disorders in humans. Biotechnol J 3:750–756CrossRefPubMedGoogle Scholar
  67. Sasaki T, Unno K, Tahara S et al (2008) Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell 7:459–469CrossRefPubMedGoogle Scholar
  68. Sastre J, Pallardó FV, García de la Asunción J et al (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198Google Scholar
  69. Schapira AH (1999) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Parkinsonism Relat Disord 5:139–143CrossRefPubMedGoogle Scholar
  70. Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586CrossRefPubMedGoogle Scholar
  71. Solmi R, Pallotti F, Rugolo M et al (1994) Lack of major mitochondrial bioenergetic changes in cultured skin fibroblasts from aged individuals. Biochem Mol Biol Int 33:477–484PubMedGoogle Scholar
  72. Song DD, Shults CW, Sisk A et al (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172CrossRefPubMedGoogle Scholar
  73. Stuart JA, Brown MF (2006) Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta 1757:79–89CrossRefPubMedGoogle Scholar
  74. Suter M, Remé C, Grimm C et al (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–39630CrossRefPubMedGoogle Scholar
  75. Takuma K, Yao J, Huang J et al (2005) ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J 19:597–598PubMedGoogle Scholar
  76. Toescu EC, Verkhratsky A, Landfield PW (2004) Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci Oct 27(10):614–620CrossRefGoogle Scholar
  77. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160CrossRefPubMedGoogle Scholar
  78. Viña J, Sastre J, Pallardó FV et al (2006) Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic Res 40:1359–1365CrossRefPubMedGoogle Scholar
  79. Wakabayashi T (2002) Megamitochondria formation - physiology and pathology. J Cell Mol Med 6:497–538CrossRefPubMedGoogle Scholar
  80. Wang AL, Lukas TJ, Yuan M et al (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651PubMedGoogle Scholar
  81. Weiter JJ (1987) Phototoxic changes in the retina. In: Miller, D (ed) Clinical light damage to the eye. Springer-Verlag, New YorkGoogle Scholar
  82. Wenzel P, Schuhmacher S, Kienhöfer J et al (2008) Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res July 22 80:280–289CrossRefPubMedGoogle Scholar
  83. Winkler BS, Boulton ME, Gottsch JD et al (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32PubMedGoogle Scholar
  84. Young RW (1987) Pathophysiology of age-related macular degeneration. Surv Ophthalmol 31:291–306CrossRefPubMedGoogle Scholar
  85. Zagon IS, Sassani JW, Myers RL et al (2007) Naltrexone accelerates healing without compromise of adhesion complexes in normal and diabetic corneal epithelium. Brain Res Bull 72:18–24CrossRefPubMedGoogle Scholar
  86. Zareba M, Raciti MW, Henry MM (2006) Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol Med 40:87–100CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Neural and Behavioral SciencesPennsylvania State University College of MedicineHersheyUSA

Personalised recommendations