Bioavailability of Xenobiotics in the Soil Environment

  • Arata Katayama
  • Raj Bhula
  • G. Richard Burns
  • Elizabeth Carazo
  • Allan Felsot
  • Denis Hamilton
  • Caroline Harris
  • Yong-Hwa Kim
  • Gijs Kleter
  • Werner Koedel
  • Jan Linders
  • J G M. Willie Peijnenburg
  • Aleksandar Sabljic
  • R. Gerald Stephenson
  • D. Kenneth Racke
  • Baruch Rubin
  • Keiji Tanaka
  • John Unsworth
  • R. Donald Wauchope
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 203)

Abstract

When synthetic, xenobiotic compounds such as agrochemicals and industrial chemicals are utilized, they eventually reach the soil environment where they are subject to degradation, leaching, volatilization, sorption, and uptake by organisms. The simplest assumption is that such chemicals in soil are totally available to microorganisms, plant roots, and soil fauna via direct, contact exposure; subsequently these organisms are consumed as part of food web processes and bioaccumulation may occur, increasing exposures to higher organisms up the food chain. However, studies in the last two decades have revealed that chemical residues in the environment are not completely bioavailable, so that their uptake by biota is less than the total amount present in soil (Alexander 1995; Gevao et al. 2003; Paine et al. 1996). Therefore, the toxicity, biodegradability, and efficacy of xenobiotics are dependent on their soil bioavailability, rendering this concept profoundly important to chemical risk assessment and pesticide registration.

References

  1. Ahmad R, Kookana RS, Megharaj M, Alston AM (2004) Aging reduces the bioavailability of even a weakly sorbed pesticide (carbaryl) in soil. Environ Toxicol Chem 23: 2084–2089.CrossRefGoogle Scholar
  2. Ahtiainen JH, Vanhala P, Myllymaki A (2003) Effects of different plant protection programs on soil microbes. Ecotoxicol Environ Saf 54: 56–64.CrossRefGoogle Scholar
  3. Aitchison EW, Kelley SL, Schnoor JL (2000) Phytoremediation of 1,4-dioxane by hybrid Poplar trees. Water Environ Res 72: 313–321.CrossRefGoogle Scholar
  4. Alam S, Kamei S, Kawai S (2001) Effects of excess manganese and metal chelators on micronutrient concentrations in the xylem sap of iron-deficient barley plants. Soil Sci Plant Nutr 47: 665–674.Google Scholar
  5. Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, CA, pp. 302.Google Scholar
  6. Alexander M (1995) How toxic are toxic chemicals in soil?. Environ Sci Technol 29: 2713–2717.CrossRefGoogle Scholar
  7. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34: 4259–4265.CrossRefGoogle Scholar
  8. Alexander RR, Alexander M (1999) Genotoxicity of two polycyclic aromatic hydrocarbons declines as they age in soil. Environ Toxicol Chem 18: 1140–1143.CrossRefGoogle Scholar
  9. Alexander RR, Alexander M (2000) Bioavailability of genotoxic compounds in soils. Environ Sci Technol 34: 1589–1593.CrossRefGoogle Scholar
  10. Alexander RR, Chung N, Alexander M (1999) Solid-phase genotoxicity assay for organic compounds in soil. Environ Toxicol Chem 18: 420–425.CrossRefGoogle Scholar
  11. Allan IJ, Semple KT, Hare R, Reid BJ (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ Pollut 144: 562–571.CrossRefGoogle Scholar
  12. Almeida CMR, Mucha AP, Vasconcelos MTSD (2005) The role of a salt marsh plant on trace metal bioavailability in sediments – Estimation by different chemical approaches. Environ Sci Pollut Res Int 12: 271–277.CrossRefGoogle Scholar
  13. Alva AK, Singh M (1991) Sorption-desorption of herbicides in soil as influenced by electrolyte cations and ionic strength. J Environ Sci Health B-Pestic Contam Agric Wastes 26: 147–164.Google Scholar
  14. Amdur MO, Doull J, Klasses CD (1993) Toxicology, the basic science of poisons. 4th ed, McGraw-Hill, Inc., New York, pp. 1033.Google Scholar
  15. Amir S, Hafidi M, Merlina G, Revel JC (2005) Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 59: 801–810.CrossRefGoogle Scholar
  16. Anderson WC, Loehr RC, Smith BP, (eds) (1999) Environmental availability of chlorinated organics, explosives, and metals in soils. American Academy of Environmental Engineers. Annapolis, MD, pp. 210.Google Scholar
  17. Anhalt JC, Arthur EL, Anderson TA, Coats JR (2000) Degradation of atrazine, metolachlor, and pendimethalin in pesticide-contaminated soils: Effects of aged residues on soil respiration and plant survival. J Environ Sci Health B-Pestic Contam Agric Wastes B 35: 417–438.Google Scholar
  18. Aronstein BN, Alexander M (1992) Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of quifer sands and soil slurries. Environ Toxicol Chem 11: 1227–1233.CrossRefGoogle Scholar
  19. Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentration on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25: 1728–1731.CrossRefGoogle Scholar
  20. Audry S, Blanc G, Schafer J (2006) Solid state partitioning of trace metals in suspended particulate matter from a river system affected by smelting-waste drainage. Sci Total Environ 363: 216–236.CrossRefGoogle Scholar
  21. Banat IM (1995) Characterization of biosurfactants and their use in pollution removal: State of the Art (Review). Acta Biotechnol 15: 251–267.CrossRefGoogle Scholar
  22. Barriuso E, Koskinen WC (1996) Incorporating nonextractable atrazine residues into soil size fractions as a function of time. Soil Sci Soc Am J 60: 150–157.CrossRefGoogle Scholar
  23. Barriuso E, Koskinen WC, Sadowsky MJ (2004) Solvent extraction characterization of bioavailability of atrazine residues in soils. J Agric Food Chem 52: 6552–6556.CrossRefGoogle Scholar
  24. Baughman TA, Shaw DR (1996) Effect of wetting/drying cycles on dissipation patterns of bioavailable imazaquin. Weed Sci 44: 380–382.Google Scholar
  25. Beckles DM, Chen W, Hughes JB (2007) Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: Microbial study and model prediction. Environ Toxicol Chem 26: 878–883.CrossRefGoogle Scholar
  26. Beigel C, Charnay M-P, Barriuso E (1999) Degradation of formulated and unformulated triticonazole fungicide in soil: Effect of application rate. Soil Biol Biochem 31: 525–534.CrossRefGoogle Scholar
  27. Bejarano AC, Decho AW, Chandler GT (2005) The role of various dissolved organic matter forms on chlorpyrifos bioavailability to the estuarine bivalve Mercenaria mercenaria. Mar Environ Res 60: 111–130.CrossRefGoogle Scholar
  28. Belfroid A, Sikkenk M, van Gestel K, Seinen W, Hermens J (1994) The toxicokinetic behavior of chlorobenzenes in earthworms (Eisenia andrei), experiments in soil. Environ Toxicol Chem 13: 93–99.Google Scholar
  29. Benoit P, Barriuso E, Soulas G (1999) Degradation of 2,4-D, 2,4-dichlorophenol, and 4-chlorophenol in soil after sorption on humified and nonhumified organic matter. J Environ Qual 28: 1127–1135.CrossRefGoogle Scholar
  30. Bergknut M, Sehlin E, Lundstedt S, Andersson PL, Haglund P, Tysklind M (2007) Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ Pollut 145: 154–160.CrossRefGoogle Scholar
  31. Berglof T, Koskinen WC, Brucher J, Kylin H (2000a) Linuron sorption-desorption in field-moist soils. J Agric Food Chem 48: 3718–3721.CrossRefGoogle Scholar
  32. Berglof T, Koskinen WC, Kylin H, Moorman TB (2000b) Characterization of triadimefon sorption in soils using supercritical fluid (SFE) and accelerated solvent (ASE) extraction techniques. Pest Manag Sci 56: 927–931.CrossRefGoogle Scholar
  33. Bernards ML, Jolley VD, Stevens WB, Hergert GW (2002) Phytosiderophore release from nodal, primary, and complete root systems in maize. Plant Soil 241: 105–113.CrossRefGoogle Scholar
  34. Beyer W, Gish C (1980) Persistence in earthworms and potential hazards to birds of soil-applied DDT, dieldrin and heptachlor. J Appl Ecol 17: 295–307.CrossRefGoogle Scholar
  35. Billeret M, Berny P, Mazallon M, Buronfosse T (2000) Bioavailability of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in rats from naturally contaminated soils: Preliminary evaluation of the influence of soil parameters. Environ Toxicol Chem 19: 2614–2620.Google Scholar
  36. Billingsley KA, Backus SM, Ward OP (1999) Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Appl Microbiol Biotechnol 52: 255–260.CrossRefGoogle Scholar
  37. Blanco HG, Matallo MB, Blanco FMG (1994) Soil persistence of cyanazine under field conditions in the humid tropics. Pesquisa Agropecuaria Brasileira 29: 397–400.Google Scholar
  38. Boersma L, Lindstrom FT, Childs SW (1991) Model for steady state coupled transport in xylem and phloem. Agronomy J 83: 401–415.CrossRefGoogle Scholar
  39. Boersma L, MacFarlane C, McCoy EL (1988) Uptake of organic chemicals by plants. Soil Sci 146: 403–417.CrossRefGoogle Scholar
  40. Boesten JJTI, van der Linden AMA (1991) Modeling the influence of sorption and transformation on pesticide leaching and persistence. J Environ Qual 20: 425–435.CrossRefGoogle Scholar
  41. Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59: 1927–1930.Google Scholar
  42. Bollag J-M (1992) Decontaminating soil with enzyme. Environ Sci Technol 26: 1876–1881.CrossRefGoogle Scholar
  43. Bollag J-M, Minard RD, Liu S-Y (1983) Cross-Linkage between anilines and phenolic humus constituents. Environ Sci Technol 17: 72–80.CrossRefGoogle Scholar
  44. Bordelon NR, Donnelly KC, King LC, Wolf DC, Reeves WR, George SE (2000) Bioavailability of the genotoxic components in coal tar contaminated soils in Fischer 344 rats. Toxicol Sci 56: 37–48.CrossRefGoogle Scholar
  45. Braida WJ, White JC, Pignatello JJ (2004) Indices for bioavailability and biotransformation potential of contaminants in soils. Environ Toxicol Chem 23: 1585–1591.CrossRefGoogle Scholar
  46. Brandt KK, Hesselsoe M, Roslev P, Henriksen K, Sorensen J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67: 2489–2498.CrossRefGoogle Scholar
  47. Breedveld GD, Sparrevik M (2000) Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegrad 11: 391–399.CrossRefGoogle Scholar
  48. Bresnahan GA, Koskinen WC, Dexter AG, Lueschen WE (2000) Influence of soil pH-sorption interactions on imazethapyr carry-over. J Agric Food Chem 48: 1929–1934.CrossRefGoogle Scholar
  49. Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubility, bioconcentration factors, and the parachor. J Agric Food Chem 29: 1050.CrossRefGoogle Scholar
  50. Briggs GG, Bomilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-inoized chemicals. Pest Sci 13: 495–504.CrossRefGoogle Scholar
  51. Briggs GG, Lord KA (1983) The distribution of aldicarb and its metabolites between Lumbricus terrestris, water and soil. Pest Sci 14: 412–416.CrossRefGoogle Scholar
  52. Briggs GG, Rigitano RL, Bromilow RH (1987) Physicochemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pest Sci 19: 101.CrossRefGoogle Scholar
  53. Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms. 7th Ed., Prentice-Hall, London, 909 pp.Google Scholar
  54. Brohon B, Gourdon R (2000) Influence of soil microbial activity level on the determination of contaminated soil toxicity using Lumistox and MetPlate bioassays. Soil Biol Biochem 32: 853–857.CrossRefGoogle Scholar
  55. Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, McFarlane JC (eds) Plant contamination: Modeling and simulation of organic chemical processes. Lewis Publishers, Boca Raton, FL, pp 37–68.Google Scholar
  56. Brouwer H, Murphy T, McArdle L (1990) A sediment-contact bioassay with Photobacterium phosphoreum. Environ Toxicol Chem 9: 1353–1358.CrossRefGoogle Scholar
  57. Bumpus JA, Tien M, Wright DS, Aust AD (1985) Oxidation of persistent environmental pollutants by white rot fungus. Science 228: 1434–1436.CrossRefGoogle Scholar
  58. Burns RG (2001) Degradation of xenobiotics: Soil surfaces and biofilms and their relevance to bioavailability and bioremediation. The Royal Society of Chemistry, Environmental Chemistry Group Newletter Issue No.14, June 3–8.Google Scholar
  59. Calvillo YM, Alexander M (1996) Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45: 383–390.CrossRefGoogle Scholar
  60. Carrizosa MJ, Calderon MJ, Hermosin MC, Cornejo J (2000) Organosmectites as sorbent and carrier of the herbicide bentazone. Sci Total Environ 247: 285–293.CrossRefGoogle Scholar
  61. Celis R, Cornejo J, Hermosin MC, Koskinen WC (1997) Sorption-desorption of atrazine and simazine by model soil colloidal components. Soil Sci Soc Am J 61: 436–443.CrossRefGoogle Scholar
  62. Celis R, Koskinen WC (1999a) Characterization of pesticide desorption from soil by the isotopic exchange technique. Soil Sci Soc Am J 63: 1659–1666.CrossRefGoogle Scholar
  63. Celis R, Koskinen WC (1999b) An isotopic exchange method for the characterization of the irreversibility of pesticide sorption-desorption in soil. J Agric Food Chem 47: 782–790.CrossRefGoogle Scholar
  64. Chaignon V, Di MD, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytol 154: 121–130.CrossRefGoogle Scholar
  65. Charrois JWA, McGill WB, Froese KL (2001) Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: A survival-based approach. Environ Toxicol Chem 20: 2594–2603.Google Scholar
  66. Chiou CT (1990) Roles of organic matter, minerals, and moisture in sorption of non-ionic compounds and pesticides by soil. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences, Selected readings. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 111–160.Google Scholar
  67. Chung N, Alexander M (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol 32: 855–860.CrossRefGoogle Scholar
  68. Chung N, Alexander M (1999) Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons. Environ Sci Technol 33: 3605–3608.CrossRefGoogle Scholar
  69. Cleveland CB (1996) Mobility assessment of agrichemicals: Current laboratory methodology and suggestions for future directions. Weed Technol 10: 157–168.Google Scholar
  70. Connaughton DF, Stedlnger JR, Llon LW, Shuler ML (1993) Description of time-varying desorption kinetics: Release of naphthalene from contaminated soils. Environ Sci Technol 27: 2397–2403.CrossRefGoogle Scholar
  71. Connell DW, Miller GJ (1984) Chemistry and Ecotoxicology of pollution. John Wiley & Sons, New York, 444 pp.Google Scholar
  72. Cox L, Koskinen WC, Celis R, Yen PY, Hermosin MC, Cornejo J (1998) Sorption of imidacloprid on soil clay mineral and organic components. Soil Sci Soc Am J 62: 911–915.CrossRefGoogle Scholar
  73. Cox L, Koskinen WC, Yen PY (1997) Sorption-desorption of imidacloprid and its metabolites in soils. J Agric Food Chem 45: 1468–1472.CrossRefGoogle Scholar
  74. Custer TW, Sparks DW, Sobiech SA, Hines RK, Melancon MJ (1996) Organochlorine accumulation by sentinel mallards at the Winston-Thomas sewage treatment plant, Bloomington, Indiana. Arch Environ Contam Toxicol 30: 163–169.CrossRefGoogle Scholar
  75. Cuypers C, Clemens R, Grotenhuis T, Rulkens W (2001) Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments. Soil Sediment Contam 10: 459–482.CrossRefGoogle Scholar
  76. Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34: 2057–2063.CrossRefGoogle Scholar
  77. Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46: 1235–1245.CrossRefGoogle Scholar
  78. Davis B (1971) Laboratory studies on the uptake of dieldrin and DDT by earthworms. Soil Biol Biochem 3: 221–233.CrossRefGoogle Scholar
  79. de Vaufleury AG, Bispo A (2000) Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. Environ Sci Technol 34: 1865–1870.CrossRefGoogle Scholar
  80. Dean JR, Scott WC (2004) Recent developments in assessing the bioavailability of persistent organic pollutants in the environment. Trend Anal Chem 23: 609–618.CrossRefGoogle Scholar
  81. Dec J, Bollag J-M (1997) Determination of covalent and non-covalent binding interactions between xenobiotic chemicals and soil. Soil Sci 162: 858–874.CrossRefGoogle Scholar
  82. Dercova K, Makovnikova J, Barancikova G, Zuffa J (2005) Bioremediation of soil and wastewater contaminated with toxic metals. Chem Listy 99: 682–693.Google Scholar
  83. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for noninoic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10: 1541–1583.CrossRefGoogle Scholar
  84. Dixon PL, McKinley RG (1992) Pitfall trap catches of and aphid predation by Pterostichus melanarius and Pterostichus madius in insecticide treated and untreated potatoes. Entomol Exp Appl 64: 63–72.CrossRefGoogle Scholar
  85. Djomo JE, Dauta A, Ferrier V, Narbonne JF, Monkiedje A, Njine T and Garrigues P (2004) Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus. Water Res 38: 1817–1821.CrossRefGoogle Scholar
  86. Doick KJ, Clasper PJ, Urmann K, Semple KT (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ Pollut 144: 345–354.CrossRefGoogle Scholar
  87. Doick KJ, Dew NM, Semple KT (2005) Linking catabolism to cyclodextrin extractability: Determination of the microbial availability of PAHs in soil. Environ Sci Technol 39: 8858–8864.CrossRefGoogle Scholar
  88. Dorn PB, Salantro JP, Evans SH, Kravetz L (1993) Assessing the aquatic hazard of some branched and linear nonionic surfactants by biodegradation and toxicity. Environ Toxicol Chem 12: 1751–1762.CrossRefGoogle Scholar
  89. D‘Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: A review. J Environ Qual 34: 1707–1745.CrossRefGoogle Scholar
  90. Edwards DA, Adeel Z, Luthy RG (1994) Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ Sci Technol 28: 1550–1560.CrossRefGoogle Scholar
  91. Edwards C, Jeff K (1974) Rate of uptake of DDT from soil by earthworms. Nature 247: 157–158.CrossRefGoogle Scholar
  92. Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37: 295A–302A.CrossRefGoogle Scholar
  93. Eijsackers H (1994) Ecotoxicology of soil organisms: Seeking the way in a pitch-dark labyrinth. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of soil organisms. CRC Press, Inc., Boca Raton, FL, pp. 3–32.Google Scholar
  94. El-Shatnawi MKJ, Makhadmeh IM (2001) Ecophysiology of the plant-rhizosphere system. J Agron Crop Sci 187: 1–9.CrossRefGoogle Scholar
  95. Farenhorst A, Topp E, Bowman BT, Tomlin AD (2000) Earthworm burrowing and feeding activity and the potential for atrazine transport by preferential flow. Soil Biol Biochem 32: 479–488.CrossRefGoogle Scholar
  96. Fava F, Berselli S, Conte P, Piccolo A, Marchetti L (2004) Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol Bioeng 88: 214–223.CrossRefGoogle Scholar
  97. Fava F, Bertin L, Fedi S, Zannoni D (2003) Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotech Bioeng 81: 381–390.CrossRefGoogle Scholar
  98. Fava F, Di GD (2001) Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil. Biotechnol Bioeng 72: 177–184.CrossRefGoogle Scholar
  99. Fava F, Piccolo A (2002) Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnol Bioeng 77: 204–211.CrossRefGoogle Scholar
  100. Felsot AS, Lew A (1989) Factors affecting bioactivity of soil insecticides: Relationships among uptake, desorption, and toxicity of carbofuran and terbufos. J Econ Entomol 82: 389–395.Google Scholar
  101. Feng YC, Park JH, Voice TC, Boyd SA (2000) Bioavailability of soil sorbed biphenyl to bacteria. Environ Sci Technol 34: 1977–1984.CrossRefGoogle Scholar
  102. Fetter CW (1999) Contaminant hydrology. Second edition, Prentice-Hall Inc., Upper Saddle River, NJ, 500 pp.Google Scholar
  103. Figueira A, Kido EA, Almeida RS (2001) Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators. Genetics Molecul Biol 24: 207–220.Google Scholar
  104. Fontaine DD, Lehmann RG, Miller JR (1991) Soil adsorption of neutral and anionic forms of a sulfonamide herbicide, flumetsulam. J Environ Qual 20: 759–762.CrossRefGoogle Scholar
  105. Fouchecourt MO, Arnold M, Berny P, Videmann B, Rether B, Riviere JL (1999) Assessment of the bioavailability of PAHs in rats exposed to a polluted soil by natural routes: Induction of EROD activity and DNA adducts and PAH burden in both liver and lung. Environ Res 80: 330–339.CrossRefGoogle Scholar
  106. Fujimura Y, Katayama A (1997) Estimation of DDT availability to a DDT-degrading bacterium in soil by a direct extraction method of bacterial cells. Chemosphere 35: 335–341.CrossRefGoogle Scholar
  107. Fujimura Y, Kuwatsuka S, Katayama A (1995) Bioavailability and biodegradation rate of DDT by Bacillus sp. B75 in the presence of dissolved humic substances. Soil Sci Plant Nutr 42: 375–381.Google Scholar
  108. Garcia Blanco H, Barifouse Matallo M, Garcia Blanco FM (1994) Soil persistence of cyanazine under field conditions in humid tropic. Pesq Agrop Bras 29: 397–400.Google Scholar
  109. Gayler S, Trapp S, Matthies M, Schroll R, Behrendt H (1995) Uptake of terbuthylazine and its medium polar metabolites into maize plants. Environ Sci Pollut Res 2: 98–103.CrossRefGoogle Scholar
  110. Geller A (1979) Sorption and desorption of atrazine by three bacterial species isolated from aquatic systems. Arch Environ Contam Toxicol 8: 713–720.CrossRefGoogle Scholar
  111. Gevao B, Jones K, Semple K, Craven A, Burauel P (2003) Nonextractable pesticide residues in soil. Environ Sci Technol 37: 138A–143A.CrossRefGoogle Scholar
  112. Gevao B, Mordaunt C, Semple KT, Piearce TG, Jones KC (2001) Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environ Sci Technol 35: 501–507.CrossRefGoogle Scholar
  113. Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: A review. Environ Pollut 108: 3–14.CrossRefGoogle Scholar
  114. Ghoshal S, Luthy RG (1996) Bioavailability of hydrophobic organic compounds from nonaqueous-phase liquids: The biodegradation of naphthalene from coal tar. Environ Toxicol Chem 15: 1894–1900.CrossRefGoogle Scholar
  115. Ghoshal S, Ramaswami A, Luthy RG (1996) Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch systems. Environ Sci Technol 30: 1282–1291.CrossRefGoogle Scholar
  116. Godskesen B, Holm PE, Jacobsen OS, Jacobsen CS (2005) Aging of triazine amine in soils demonstrated through sorption, desorption, and bioavailability measurements. Environ Toxicol Chem 24: 510–516.CrossRefGoogle Scholar
  117. Gold RE, Howell HN Jr., Pawson BM, Wright MS, Lutz JC (1996) Persistence and bioavailability of termiticides to subterranean termites (Isoptera:Rhinotermitidae) from five soil types and locations in Texas. Sociobiol 28: 337–364.Google Scholar
  118. Gong P, Siciliano SD, Greer CW, Paquet L, Hawari J, Sunahara GI (1999) Effects and bioavailability of 2,4,6-trinitrotoluene in spiked and field-contaminated soils to indigenous microorganisms. Environ Toxicol Chem 18: 2681–2688.CrossRefGoogle Scholar
  119. Green RE (1974) Pesticide-clay-water interactions. In: Guenzi WD (ed) Pesticides in soil and water. Soil Sceince Society of America, Inc., Madison, WI, pp. 3–38.Google Scholar
  120. Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16: 667–674.CrossRefGoogle Scholar
  121. Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58: 1142–1152.Google Scholar
  122. Guerin WF, Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54: 937–944.Google Scholar
  123. Guerrero NRV, Taylor MG, Wider EA, Simkiss K (2003) Influence of particle characteristics and organic matter content on the bioavailability and bioaccumulation of pyrene by clams. Environ Pollut 121: 115–122.CrossRefGoogle Scholar
  124. Guetzloff TF, Rice JA (1994) Does humic form a micelle?. Sci Total Environ 152: 31–35.CrossRefGoogle Scholar
  125. Guha S, Jaffe PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32: 2317–2324.CrossRefGoogle Scholar
  126. Gunkel J, Ronnpagel K, Ahlf W (1993) Suitability of microbial bioassays for bound contaminants. Acta Hydrochimica et Hydrobiologica 21: 215–220.CrossRefGoogle Scholar
  127. Guo L, Bicki TJ, Felsot AS, Hinesly TD (1991) Phytotoxicity of atrazine and alachlor in soil amended with sludge, manure and activated carbon. J Environ Sci Health B 16: 513–527.CrossRefGoogle Scholar
  128. Gyldenkaerne S, Joergensen SE (2000) Modelling the bioavailability of pesticides to soil-dwelling organisms. Ecol Model 132: 203–230.CrossRefGoogle Scholar
  129. Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele JP (1999) Ecotoxicological assessment of soils of former manufactured gas plant sites: Bioremediation potential and pollution mobility. Environ Sci Technol 33: 4379–4383.CrossRefGoogle Scholar
  130. Hallgren P, Westbom R, Nilsson T, Sporring S, Bjorklund E (2006) Measuring bioavailability of polychlorinated biphenyls in soil to earthworms using selective supercritical fluid extraction. Chemosphere 63: 1532–1538.CrossRefGoogle Scholar
  131. Harms H, Bosma TNP (1997) Mass transfer limitations of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18: 97–105.CrossRefGoogle Scholar
  132. Harmsen J, Rulkens WH, Sims RC, Rijtema PE, Zweers AJ (2007) Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments; Beneficial reuse. J Environ Qual 36: 1112–1122.CrossRefGoogle Scholar
  133. Hatzinger PB, Alexander M (1997) Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles. Environ Toxicol Chem 16: 2215–2221.CrossRefGoogle Scholar
  134. Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34: 4103–4110.CrossRefGoogle Scholar
  135. Hawthorne SB, Lanno R, Kreitinger JP (2005) Reduction in acute toxicity of soils to terrestrial oligochaetes following the removal of bioavailable polycyclic aromatic hydrocarbons with mild supercritical carbon dioxide extraction. Environ Toxicol Chem 24: 1893–1895.CrossRefGoogle Scholar
  136. Heida H, Olie K, Prins E (1986) Selective accumulation of chlorobenzenes, polychlorinated dibenzofurans and 2,3,7,8-TCDD in wildlife of the Volgermeerpolder, Amsterdam, Holland. Chemosphere 15: 1995–2000.CrossRefGoogle Scholar
  137. Hendriks AJ, Ma W-C, Brouns JJ, de Ruiter-Dijkman EM, Gast R (1995) Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains. Arch Environ Contam Toxicol 29: 115–127.CrossRefGoogle Scholar
  138. Hesselsoe M, Brandt KK, Sorensen J (2001) Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH). FEMS Microbiol Ecol 38: 87–95.Google Scholar
  139. Hickman ZA, Reid BJ (2005) Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ Pollut 138: 299–306.CrossRefGoogle Scholar
  140. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28: 367–376.Google Scholar
  141. Hu X-Y, Wen B, Shan X-Q, Zhang S-Z (2005a) Bioavailability of pentachlorophenol to earthworms (Eisenia fetida) in artificially contaminated soils. J Environ Sci Health A 40: 1905–1916.Google Scholar
  142. Hu XY, Wen B, Zhang SZ, Shan XQ (2005b) Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Ecotoxicol Environ Saf 62: 26–34.CrossRefGoogle Scholar
  143. Hund K (1997) Algal growth inhibition test – feasibility and limitations for soil assessment. Chemosphere 35: 1069–1082.CrossRefGoogle Scholar
  144. Hund-Rinke K, Koerdel W (2003) Underlying issues in bioaccessibility and bioavailability: Experimental methods. Ecotoxicol Environ Saf 56: 52–62.CrossRefGoogle Scholar
  145. Hund-Rinke K, Simon M (2005) Terrestrial ecotoxicity of eight chemicals in a systematic approach. J Soils Sediments 5: 59–65.CrossRefGoogle Scholar
  146. ISO/DIS15685 (2001) Soil quality – Determination of potential nitrification – Rapid test by ammonium oxidation.Google Scholar
  147. ISO11267 (1999) Soil quality – Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants.Google Scholar
  148. ISO11268-1 (1993) Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 1: Determination of acute toxicity using artificial soil substrate.Google Scholar
  149. ISO11268-2 (1998) Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 2: Determination of effects on reproduction.Google Scholar
  150. ISO11268-3 (1999) Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 3: Guidance on the determination of effects in field situations.Google Scholar
  151. ISO11269-1 (1993) Soil quality – Determination of the effects of pollutants on soil flora – Part 1: Method for the measurement of inhibition of root growth.Google Scholar
  152. ISO11269-2 (1995) Soil quality – Determination of the effects of pollutants on soil flora – Part 2: Effects of chemicals on the emergence and growth of higher plants.Google Scholar
  153. ISO11348-1 (1998) Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 1: Method using freshly prepared bacteria.Google Scholar
  154. ISO14238 (1997) Soil quality – Biological methods – Determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes.Google Scholar
  155. ISO14240-1 (1997) Soil quality – Determination of soil microbial biomass – Part 1: Substrate-induced respiration method.Google Scholar
  156. ISO14240-2 (1997) Soil quality – Determination of soil microbial biomass – Part 2: Fumigation-extraction method.Google Scholar
  157. ISO17155 (1997) Soil quality – Determination of abundance and activity of soil microflora using respiration curves.Google Scholar
  158. Iannacone J, Gutierrez A (1999) Ecotoxicity of agrochemicals lindane and chlorpyrifos on the nematode Panagrellus, the microalgae Chlorella and the Allium test. Agricultura Tecnica Santiago 2: 85–95.Google Scholar
  159. Intawongse M, Dean JR (2006) In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trac-Trends Anal Chem 25: 876–886.CrossRefGoogle Scholar
  160. Jacobsen CS, Shapir N, Jensen LO, Jensen EH, Juhler RK, Streibig JC, Mandelbaum RT, Helweg A (2001) Bioavailability of triazine herbicides in a sandy soil profile. Biol Fertil Soils 33: 501–506.CrossRefGoogle Scholar
  161. Jager T, Van der Wal L, Fleuren RHLJ, Barendregt A, Hermens JLM (2005) Bioaccumulation of organic chemicals in contaminated soils: Evaluation of bioassays with earthworms. Environ Sci Technol 39: 293–298.CrossRefGoogle Scholar
  162. Jin Z, Simkins S, Xing B (1999) Bioavailability of freshly added and aged naphthalene in soils under gastric pH conditions. Environ Toxicol Chem 18: 2751–2758.CrossRefGoogle Scholar
  163. Johnson RM, Sims JT (1993) Influence of surface and subsoil properties on herbicide sorption by atlantic coastal plain soils. Soil Sci 155: 339–348.CrossRefGoogle Scholar
  164. Junnila S, Heinonen-Tanski H, Ervio LR, Laitinen P (1994) Phytotoxic persistence and microbial effects of chlorsulfuron and metsulfuron in Finnish soils. Weed Res 34: 413–423.CrossRefGoogle Scholar
  165. Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J and Lehtokari M (2000) A battery of toxicity tests as indicators of decontamination in composting oily waste. Ecotoxicol Environ Saf 47: 156–166.CrossRefGoogle Scholar
  166. Kah M, Brown CD (2007) Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68: 1335–1343.CrossRefGoogle Scholar
  167. Kan ATK, Fu G, Tomson MB (1994) Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction. Environ Sci Technol 28: 859–867.</Journal>CrossRefGoogle Scholar
  168. Karimi-Lotfabad S, Pickard MA, Gray MR (1996) Reactions of polynuclear aromatic hydrocarbons on soil. Environ Sci Technol 30: 1145–1151.CrossRefGoogle Scholar
  169. Karpouzas D, Giannakou IO, Walker A, Gowen SR (1999) Reduction in biological efficacy of ethoprophos in a soil from Greece due to enhanced biodegradation: Comparing bioassay with laboratory incubation data. Pest Sci 55: 1089–1094.CrossRefGoogle Scholar
  170. Katayama A, Fujimura Y, Kuwatsuka S (1993) Microbial degradation of DDT at extremely low concentrations. J Pest Sci 18: 353–359.Google Scholar
  171. Kelsey JW, Alexander M (1997) Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ Toxicol Chem 16: 582–585.CrossRefGoogle Scholar
  172. Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31: 214–217.CrossRefGoogle Scholar
  173. Khan SU (1982) Bound pesticide residues in soil and plants. Residue Rev 84: 1–25.Google Scholar
  174. Khan SU (1991) Bound residues. In: Grover R, Cessna AJ (eds.) Environmental chemistry of herbicides, Vol. 2. CRC, Boca Raton, FL, pp. 265–279.Google Scholar
  175. Khan SU, Behki RM (1990) Effects of Pseudomonas species on the release of bound 14C residues from soils previously treated with [14C]atrazine. J Agric Food Chem 38: 2090–2093.CrossRefGoogle Scholar
  176. King JMH, DiGrazia PM, Applegate BM, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249: 778–781.CrossRefGoogle Scholar
  177. Knightes CD, Peters CA (2003) Aqueous Phase Biodegradation Kinetics of 10 PAH compounds. Environ Engineer Sci 20: 207–218.CrossRefGoogle Scholar
  178. Knuutinen J, Palm H, Hakata H, Haimi J, Huhta V, Salminen J (1990) Polychlorinated phenols and their metabolites in soil and earthworms of sawmill environment. Chemosphere 20: 609–623.CrossRefGoogle Scholar
  179. Koch AL (1990) Diffusion: The crucial process in many aspects of biology of bacteria. Adv Microbiol Ecol 11: 37–69.Google Scholar
  180. Koehler H, Warrelmann J, Frische T, Behrend P, Walter U (2002) In-situ phytoremediation of TNT-contaminated soil. Acta Biotechnol 22: 67–80.CrossRefGoogle Scholar
  181. Kohl SD, Rice JA (1998) The binding of contaminants to humin: A mass balance. Chemosphere 36: 251–261.CrossRefGoogle Scholar
  182. Kong MS, Ma TH (1999) Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mutat Res Fundam Mol Mech of Mutagen 426: 221–228.CrossRefGoogle Scholar
  183. Kookana RS, Gerritse RG, Aylmore LAG (1990) Effects of organic cosolvent on adsorption and desorption of linuron and simazine in soil. Soil Sci 154: 344–349.CrossRefGoogle Scholar
  184. Koskinen WC, Cox L, Yen PY (2001) Changes in sorption/bioavailability of imidacloprid metabolites in soil with incubation time. Biol Fertil Soils 33: 546–550.CrossRefGoogle Scholar
  185. Krauss M, Wilcke W, Zech W (2000) Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environ Sci Technol 34: 4335–4340.CrossRefGoogle Scholar
  186. Kreitinger JP, Neuhauser EF, Doherty FG, Hawthorne SB (2007a) Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites. Environ Toxicol Chem 26: 1146–1157.CrossRefGoogle Scholar
  187. Kreitinger JP, Quinones-Rivera A, Neuhauser EF, Alexander M, Hawthorne SB (2007b) Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. Environ Toxicol Chem 26: 1809–1817.CrossRefGoogle Scholar
  188. Krogh PH, Henriksen K and Jacobsen CS (2003) Organic contaminants in soil. Environ Toxicol Chem 22: 691–691.CrossRefGoogle Scholar
  189. Kuperman R, Simini GM, Phillips CT, Checkai RT, Diaz-Cosin DJ (1999) Comparison of malathion toxicity using enchytraeid reproduction test and eathworm toxicity test in different soil types. Pedobiologia 43: 630–634.Google Scholar
  190. Laha S, Luthy RG (1992) Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotech Bioeng 40: 1367–1380.CrossRefGoogle Scholar
  191. Lang E, Viedt H, Egestorff J and Hanert HH (1992) Reaction of the soil microflora after contamination with chlorinated aromatc-compounds and HCH. FEMS Microbiol Ecol 86: 275–282.CrossRefGoogle Scholar
  192. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57: 39–47.CrossRefGoogle Scholar
  193. Lee P-H, Ong SK, Golchin J, Nelson GL (2001) Use of solvents to enhance PAH biodegradation of coal tar-contaminated soils. Water Res 35: 3941–3949.CrossRefGoogle Scholar
  194. Leistra M, Matser AM (2004) Adsorption, transformation, and bioavailability of the fungicides carbendazim and iprodione in soil, alone and in combination. J Environ Sci Health B-Pestic Contam Agric Wastes B 39: 1–17.Google Scholar
  195. Leland JE, Mullins DE, Berry DF (2001) Evaluating environmental hazards of land applying composted diazinon using earthworm bioassays. J Environ Sci Health Part B-Pestic Contam Agric Wastes B 36: 821–834.Google Scholar
  196. Leroux P, Gredt M (1977) Uptake of systemic fungicides by maize roots. Neth J Plant Pathol 83(Suppl. 1): 51–61.CrossRefGoogle Scholar
  197. Liebich J, Burauel P, Fuehr F (1999) Microbial release and degradation of nonextractable anilazine residues. J Agric Food Chem 47: 3905–3910.CrossRefGoogle Scholar
  198. Lindstrom FT, Boersma L, McFarlane C (1991) Mathematical model of plant uptake and translocation of organic chemicals: Development of the model. J Environ Qual 20: 129–136.CrossRefGoogle Scholar
  199. Liste H-H, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40: 11–14.CrossRefGoogle Scholar
  200. Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61: 145–151.Google Scholar
  201. Liu L, Tindall JA, Friedel MJ (2007a) Biodegradation of PAHs and PCBs in soils and sludges. Water Air Soil Pollut 181: 281–296.CrossRefGoogle Scholar
  202. Liu L, Tindall JA, Friedel MJ, Zhang WX (2007b) Biodegradation of organic chemicals in soil/water microcosms system: Model development. Water Air Soil Pollut 178: 131–143.CrossRefGoogle Scholar
  203. Lock K, De SKAC, Janssen CR (2002) The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42: 217–221.CrossRefGoogle Scholar
  204. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediat 4: 101–115.CrossRefGoogle Scholar
  205. Loehr R (1996) The environmental Impact of Soil Contamination: Bioavailability, Risk Assessment, and Police Implications. Policy Study No. 211 Retrieved Oct. 15, 2008, from http://www.reason.org/ps211.html (Reason Public Policy Institute).
  206. Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138: 121–131.CrossRefGoogle Scholar
  207. Lovell CR, Bagwell CE, Czako M, Marton L, Piceno YM, Ringelberg DB (2001) Stability of a rhizosphere microbial community exposed to natural and manipulated environmental variability. FEMS Microbiol Ecol 38: 69–76.CrossRefGoogle Scholar
  208. Lu X, Reible DD, Fleeger JW, Chai Y (2003) Bioavailability of desorption-resistant phenanthrene to the oligochaete Ilyodrilus templetoni. Environ Toxicol Chem 22: 153–160.Google Scholar
  209. Ma W-C, Van Kleunen A, Immerzeel J, De Maagd PG-J (1998) Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: Assessment of equilibrium partitioning theory in situ studies and water experiments. Environ Toxicol Chem 17: 1730–1737.CrossRefGoogle Scholar
  210. Macleod CJA, Semple KT (2000) Influence of contact time on extractability and degradation of pyrene in soils. Environ Sci Technol 34: 4952–4957.CrossRefGoogle Scholar
  211. Macur RE, Inskeep WP (1999) Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil. Environ Toxicol Chem 18: 1927–1931.CrossRefGoogle Scholar
  212. Maenpaa K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77: 329–338.CrossRefGoogle Scholar
  213. Makovnikova J, Barancikova G, Dlapa P, Dercova K (2006) Inorganic contaminants in soil ecosystems. Chem Listy 100: 424–432.Google Scholar
  214. Malik N, Drennan DSH (1989) Adsorption-desorption equilibria of carbon-14 labeled fluridone at low solution concentrations and soil water ratios. Can J Soil Sci 69: 567–578.CrossRefGoogle Scholar
  215. Martensson AM (1992) Effects of agrochemicals and heavy-metals on fast-growing Rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24: 435–445.CrossRefGoogle Scholar
  216. McFarlane JC, Pfleeger T, Fletcher J (1987) Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants. J Environ Qual 16: 372–376.CrossRefGoogle Scholar
  217. McGhee I, Sannino F, Gianfreda L, Burns RG (1999) Bioavailability of 2,4-D sorbed to a chlorite-like complex. Chemosphere 39: 285–291.CrossRefGoogle Scholar
  218. Megharaj M, Pearson HW and Venkateswarlu K (1992) Effects of phenolic-compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant Soil 140: 25–34.CrossRefGoogle Scholar
  219. Meredith CE, Radosevich M (1998) Bacterial degradation of homo- and heterocyclic aromatic compounds in the presence of soluble/colloidal humic acid. J Environ Sci Health B-Pestic Contam Agric Wastes 33: 17–36.Google Scholar
  220. Michel K, Ludwig B (2005) Bioavailability and biogeochemistry of metals in the terrestrial environment. In: Sigel A, Sigel H, Sigel R (eds.) Metal Ions in Biological Systems, Vol. 44, Biogeochemistry, availability, and transport of metals in the environment. Taylor & Francis Ltd., London, pp. 75–96.Google Scholar
  221. Mitragotri S (2002) A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on scaled particle theory. J Pharm Sci 91: 744–752.CrossRefGoogle Scholar
  222. Moermond CTA, Roozen FCJM, Zwolsman JJG, Koelmans AA (2004) Uptake of sediment-bound bioavailable polychlorobiphenyls by benthivorous carp (Cyprinus carpio). Environ Sci Technol 38: 4503–4509.CrossRefGoogle Scholar
  223. Molnar M, Leitgib L, Gruiz K, Fenyvesi E, Szaniszlo N, Szejtli J, Fava F (2005) Enhanced biodegradation of transformer oil in soils with cyclodextrin – from the laboratory to the field. Biodegrad 16: 159–168.CrossRefGoogle Scholar
  224. Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ Sci Technol 34: 709–713.CrossRefGoogle Scholar
  225. Mullie WC, Everts JW (1991) Uptake and elimination of [14C]deltamethrin by Oedothorax apicatus (Arachnida; Erigoniae) with respect to bioavailability. Pest Biochem Physiol 39: 27–34.CrossRefGoogle Scholar
  226. Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability. Tests with model solids. Environ Sci Technol 32: 71–74.CrossRefGoogle Scholar
  227. Nam K, Chung N, Alexander M (1998) Relationship between organic matter content of soil and the sequestration of phenanthrene. Environ Sci Technol 32: 3785–3788.CrossRefGoogle Scholar
  228. Nash RG (1974) Plant uptake of insecticides, fungicides, and fumigants from soils. In: Guenzi WD (ed) Pesticides in soil and water. Soil Sceince Society of America, Inc., Madison, WI, pp. 257–313.Google Scholar
  229. Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30: 83–94.CrossRefGoogle Scholar
  230. Nikaido H (1993) Transport across the bacterial outer membrane. J Bioener Biomembr 25: 581–589.Google Scholar
  231. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49: 1–32.Google Scholar
  232. Nilsson T, Bjorklund E (2005) Selective supercritical fluid extraction as a tool for determining the PCB fraction accessible for uptake by chironomid larve in a limnic sediment. Chemosphere 60: 141–146.CrossRefGoogle Scholar
  233. Nilsson T, Bowadt S, Bjorklund E (2002) Development of a simple selective SFE method for the determination of desorption behaviour of PCBs in two Swedish sediments. Chemosphere 46: 469–476.CrossRefGoogle Scholar
  234. Nilsson T, Hakkinen J, Larsson P, Bjorklund E (2006) Selective supercritical fluid extraction to identify aged sediment-bound PCBs available for uptake by eel. Environ Pollut 140: 87–94.CrossRefGoogle Scholar
  235. Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ Pollut 108: 19–43.CrossRefGoogle Scholar
  236. OECD106 (2000) Guidelines for the Testing of Chemicals 106, Adsorption – Desorption Using a Batch Equilibrium Method.Google Scholar
  237. OECD207 (1984) Guidelines for the Testing of Chemicals 207, Earthworm, Acute toxicity tests.Google Scholar
  238. OECD208 (1984) Guidelines for the Testing of Chemicals 208, Terrestrial plants, growth test.Google Scholar
  239. OECD216 (2000) Guidelines for the Testing of Chemicals 216, Soil microorganisms: Nitrogen transformation test.Google Scholar
  240. OECD217 (2000) Guidelines for the Testing of Chemicals 217, Soil microorganisms: Carbon transformation test.Google Scholar
  241. Oen AMP, Schaanning M, Ruus A, Cornelissen G, Kallqvist T, Breedveld GD (2006) Predicting low biota to sediment accumulation factors of PAHs by using infinite-sink and equilibrium extraction methods as well as BC-inclusive modeling. Chemosphere 64: 1412–1420.CrossRefGoogle Scholar
  242. Ogram AV, Jessup RE, Ou LT, Rao PS (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49: 582–587.Google Scholar
  243. Oliveira RS, Jr., Koskinen WC, Ferreira FA (2001) Sorption and leaching potential of herbicides on Brazilian soils. Weed Res 41: 97–110.CrossRefGoogle Scholar
  244. Oliveira RSJ, Koskinen WC, Werdin NR, Yen PY (2000) Sorption of imidacloprid and its metabolites on tropical soils. J Environ Sci Health B-Pestic Contam Agric Wastes 35: 39–49.Google Scholar
  245. Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr 53: 86–94.CrossRefGoogle Scholar
  246. Ouyang Y (2002) Phytoremediation: Modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrol 266: 66–82.CrossRefGoogle Scholar
  247. Ouyang Y, Shinde D, Ma LQ (2005) Simulation of phytoremediation of a TNT-contaminated soil using the CTSPAC model. J Environ Qual 34: 1490–1496.CrossRefGoogle Scholar
  248. Paine MD, Chapman PM, Allard PJ, Murdoch MH, Minifie D (1996) Limited bioavailability of sediment PAH near an aluminum smelter: Contamination does not equal effects. Environ Toxicol Chem 15: 2003–2018.CrossRefGoogle Scholar
  249. Papadopoulos A, Paton GI, Reid BJ, Semple KT (2007) Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. J Environ Monitor 9: 516–522.CrossRefGoogle Scholar
  250. Park J-W, Dec J, Kim J-E, Bollag J-M (2000) Dehalogenation of xenobiotics as a consequence of binding to humic materials. Arch Environ Contam Toxicol 38: 405–410.CrossRefGoogle Scholar
  251. Park J-H, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69: 3288–3298.CrossRefGoogle Scholar
  252. Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137: 187–197.CrossRefGoogle Scholar
  253. Parsons JR, Opperhuizen A, Hutzinger O (1987) Influence of membrane permeation on biodegradation kinetics of hydrophobic compounds. Chemosphere 16: 1361–1370.CrossRefGoogle Scholar
  254. Paton GI, Killham K, Weitz HJ, Semple KT (2005) Biological tools for the assessment of contaminated land: Applied soil ecotoxicology. Soil Use Manage 21: 487–499.CrossRefGoogle Scholar
  255. Pattison AB, Stanton JM, Cobon JA (2000) Bioassay for enhanced biodegradation of nematicides in soil. Australasian Plant Path 29: 52–58.CrossRefGoogle Scholar
  256. Paul EA, Clark FE (1988) Soil microbiology and biochemistry. Academic Press Inc., San Diego, CA, pp. 198–221.Google Scholar
  257. Pavlostathis SG, Jaglal K (1991) Desorptive behavior of trichloroethylene in contaminated soil. Environ Sci Technol 25: 274–279.CrossRefGoogle Scholar
  258. Peijnenburg W, Zablotskaja M, Vijver MG (2007) Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol Environ Saf 67: 163–179.CrossRefGoogle Scholar
  259. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30: 1–11.CrossRefGoogle Scholar
  260. Pinto LJ, Moore MM (2000) Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp. Environ Toxicol Chem 19: 1741–1748.Google Scholar
  261. Pollumaa L, Kahru A, Manusadzianas L (2004) Biotest- and chemistry-based hazard assessment of soils, sediments and solid wastes. J Soils Sediments 4: 267–275.CrossRefGoogle Scholar
  262. Prati M, Biganzoli E, Boracchi P, Tesauro M, Monetti C, Bernardini G (2000) Ecotoxicological soil evaluation by FETAX. Chemosphere 41: 1621–1628.CrossRefGoogle Scholar
  263. Pritchard PH, Johnes-Meeham J, Mueller JG, Straube W (1999) Bioremediation of high molecular weight PAHs. Application of techniques in bioaugmentation and bioavailability enhancement. In: Fass R, Flashner Y, Reuveny S (eds.) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp. 157–169.Google Scholar
  264. Pusino A, Liu W, Fang Z, Gessa C (1993) Effect of metal binding ability on the adsorption of acifluorfen on soil. J Agric Food Chem 41: 502–505.CrossRefGoogle Scholar
  265. Racke KD, Lichtenstein EP (1985) Effects of soil microorganisms on the release of bound residues from soils previously treated with [14C] parathion. J Agric Food Chem 33: 939–943.CrossRefGoogle Scholar
  266. Radosevich M, Traina SJ, Tuovinen OH (1997) Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria. J Environ Qual 26: 206–214.CrossRefGoogle Scholar
  267. Ramakrishnan R, Suiter DR, Nakatsu CH, Bennett GW (2000) Feeding inhibition and mortality in Reticulitermes flavipes (Isoptera: Rhinotermitidae) after exposure to imidacloprid-treated soils. J Econ Entomol 93: 422–428.CrossRefGoogle Scholar
  268. Ramaswami A, Ghoshal S, Luthy RG (1997) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-Slurry systems. 2. Experimental evaluations. Environ Sci Technol 31: 2268–2276.CrossRefGoogle Scholar
  269. Ramaswami A, Luthy RG (1997a) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-Slurry systems: 1. Model development. Environ Sci Technol 31: 2260–2267.CrossRefGoogle Scholar
  270. Ramaswami A, Luthy RG (1997b) Measuring and modeling physicochemical limitations to bioavailability and biodegradation. In: Hurst CJ (ed.) Manual of environmental microbiology. ASM Press, Washington, DC, pp. 721–729.Google Scholar
  271. Rauret G, López-Sánchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of the new sediment and soil reference materials. J Environ Monitor 1: 57–61.CrossRefGoogle Scholar
  272. Reeves WR, McDonald TJ, Bordelon NR, Elizabeth George S, Donnelly KC (2001) Impacts of aging on in vivo and in vitro measurements of soil-bound polycyclic aromatic hydrocarbon availability. Environ Sci Technol 35: 1637–1643.CrossRefGoogle Scholar
  273. Regitano JB, Koskinen WC, Sadowsky MJ (2006) Influence of soil aging on sorption and bioavailability of simazine. J Agric Food Chem 54: 1373–1379.CrossRefGoogle Scholar
  274. Reid BJ, MacLeod CJA, Lee PH, Morriss AWJ, Stokes JD, Semple KT (2001) A simple 14C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiol Lett 196: 141–146.CrossRefGoogle Scholar
  275. Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34: 3174–3179.CrossRefGoogle Scholar
  276. Ressler BP, Kneifel H, Winter J (1999) Bioavailability of polycyclic aromatic hydrocarbons and formation of humic acid-like residues during bacterial PAH degradation. Appl Microbiol Biotechnol 53: 85–91.CrossRefGoogle Scholar
  277. Ribeiro S, Guilhermino L, Sousa JP, Soares AMVM (1999) Novel bioassay based on acetylcholinesterase and lactate dehydrogenase activities to evaluate the toxicity of chemicals to soil isopods. Ecotoxicol Environ Saf 44: 287–293.CrossRefGoogle Scholar
  278. Rice PJ, Anderson TA, Coats JR (2004) Effect of sediment on the fate of metolachlor and atrazine in surface water. Environ Toxicol Chem 23: 1145–1155.CrossRefGoogle Scholar
  279. Riederer M (1990) Estimating partitioning and transport of organic chemicals in the foliage-atmosphere system discussion of a fugacity-based model. Environ Sci Technol 24: 829–837.CrossRefGoogle Scholar
  280. Rieuwerts JS (2007) The mobility and bioavailability of trace metals in tropical soils: A review. Chem Speciation Bioavail 19: 75–85.CrossRefGoogle Scholar
  281. Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticles mass transfer on the aerobic biomineralization of alpha hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24: 1349–1354.CrossRefGoogle Scholar
  282. Riviere J-L (2000) Ecological risk evaluation of polluted soils. A A Balkema, Rotterdam, 223 pp.Google Scholar
  283. Roberts TR (1984) Non-extractable pesticide residues in soils and plants. Pure Appl Chem 56: 945–956.CrossRefGoogle Scholar
  284. Roberts TR, Standen ME (1981) Further studies of the degradation of the pyrethroid insecticide in soils. Pest Sci 12: 285–296.CrossRefGoogle Scholar
  285. Robinson KG, Novak JT (1994) Fate of 2,4,6-trichloro(14C)-phenol bound to dissolved humic acid. Water Res 28: 445–452.CrossRefGoogle Scholar
  286. Robinson B, Russell C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria: Implications for New Zealand pastureland. Agric Ecosyst Environ 87: 315–321.CrossRefGoogle Scholar
  287. Roch F, Alexander M (1995) Biodegradation of hydrophobic compounds in the presence of surfactants. Environ Toxicol Chem 14: 1151–1158.CrossRefGoogle Scholar
  288. Rochette EA, Koskinen WC (1996) Supercritical carbon dioxide for determining atrazine sorption by field-moist soils. Soil Sci Soc Am J 60: 453–460.CrossRefGoogle Scholar
  289. Rochette EA, Koskinen WC (1998) Atrazine sorption in field-moist soils: Supercritical carbon dioxide density effects. Chemosphere 36: 1825–1839.CrossRefGoogle Scholar
  290. Rosenberg E, Barkey T, Navon-Venezia S, Ron EZ (1999) Role of Acinetobacter bioemulsans in petroleum degradation. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp. 171–180.Google Scholar
  291. Rosenberg M, Doyle RJ (1990) Microbial cell surface hydrophobicity: History, measurement, and significance. In: Rosenberg M, Doyle RJ (eds.) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, DC, pp. 1–37.Google Scholar
  292. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl Environ Microbiol 37: 402–408.Google Scholar
  293. Roy C, Gaillardon P, Montfort F (2000) The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Manag Sci 56: 795–803.CrossRefGoogle Scholar
  294. Ruus A, Schaanning M, Oxnevad S, Hylland K (2005) Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat Toxicol 72: 273–292.CrossRefGoogle Scholar
  295. Sabljic A, Gusten H, Verhaar H, Hermens J (1995) QSAR modeling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 31: 4489–4514.CrossRefGoogle Scholar
  296. Sander M, Lu Y, Pignatello JJ (2005) A thermodynamically based method to quantify true sorption hysteresis. J Environ Qual 34: 1063–1072.CrossRefGoogle Scholar
  297. Sander M, Pignatello JJ (2005) An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter. Environ Sci Technol 39: 7476–7484.CrossRefGoogle Scholar
  298. Sayler GS, Cox CD, Burlarge R, Ripp S, Nivens DE, Werner C, Ahn Y, Matrubutham U (1999) Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp. 241–254.Google Scholar
  299. Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology: Evaluation of different test systems in soil toxicity assessment. J Soils Sediments 3: 79–84.CrossRefGoogle Scholar
  300. Schmidt SK, Schuler M, Alexander M (1986) Predicting threshold concentrations of organic substrates for bacterial growth. J Theor Biol 114: 1–8.CrossRefGoogle Scholar
  301. Schwartz E, Scow KM (1999) Using biodegradation kinetics to measure availability of aged phenanthrene to bacteria inoculated into soil. Environ Toxicol Chem 18: 1742–1746.CrossRefGoogle Scholar
  302. Scott WC, Dean JR (2005) An assessment of the bioavailability of persistent organic pollutants from contaminated soil. J Environ Monitor 7: 710–715.CrossRefGoogle Scholar
  303. Scow KM (1993) Effect of sorption-desorption and diffusion processes on the kinetics of biodegradation of organic chemicals in soil. In: Linn DM (ed) Sorption and degradation of pesticides and organic chemicals in soil. Soil Science Society of America and American Society of Agronomy, Madison, WI, pp. 73–114.Google Scholar
  304. Scribner SL, Benzing TR, Sun S, Boyd SA (1992) Desorption and bioavailability of aged simazine residues in soil from a continuous corn field. J Environ Qual 21: 115–120.CrossRefGoogle Scholar
  305. Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur Soil Sci 54: 809–818.CrossRefGoogle Scholar
  306. Shah PV, Dauterman WC, Guthrie FE (1972) Penetration of a series of dialkoxy analogs of dimethoate through the isolated gut of insects and animals. Pest Biochem Physiol 2: 324–330.CrossRefGoogle Scholar
  307. Shaw DR, Murphy GP (1997) Field persistence of bioavailable flumetsulam. Weed Sci 45: 568–572.Google Scholar
  308. Sha’ato R, Buncel E, Gamble DG, vanLoon GW (2000) Kinetics and equilibria of Metribuzin sorption on model soil components. Can J Soil Sci 80: 301–307.Google Scholar
  309. Sheppard SC (2005) Assessment of long-term fate of metals in soils: Inferences from analogues. Can J Soil Sci 85: 1–18.Google Scholar
  310. Shindo H, Huang PM (1982) Role of Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature 298: 363–365.CrossRefGoogle Scholar
  311. Shindo H, Huang PM (1984) Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature 308: 57–58.CrossRefGoogle Scholar
  312. Shindo H, Huang PM (1985) Catalytic polymerization of hydroquinone by primary minerals. Soil Sci 139: 505–511.CrossRefGoogle Scholar
  313. Shone MGT, Wood AV (1974) A Comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by Barley. I. Absorption in eelation to physico-chemical properties. J Exp Bot 25: 390–400.CrossRefGoogle Scholar
  314. Shor LM, Kosson DS (2000) Bioavailability of organic contaminants in soils. In: Valdes JJ (ed) Bioremediation. Kluwer Academic Publishers, Dordrecht, pp. 15–43.Google Scholar
  315. Sikora LJ, Kaufman DD, Horng LC (1990) Enzyme activity in soils showing enhanced degradation of organophosphate insecticides. Biol Fertil Soils 9: 14–18.CrossRefGoogle Scholar
  316. Singh K, Sasakuma T, Bughio N, Takahashi M, Nakanishi H, Yoshimura E, Nishizawa NK, Mori S (2000) Ability of ancestral wheat species to secrete mugineic acid family phytosiderophores in response to iron deficiency. J Plant Nutr 23: 1973–1981.CrossRefGoogle Scholar
  317. Somerville L, Greaves MP (eds) (1987) Pesticide effects on soil microflora. Taylor and Francis.. London, 240 pp.Google Scholar
  318. Staempfli C, Becker-van Slooten B, Tarradellas J (2002) Hsp70 instability and induction by a pesticide in Folsomia candida. Biomarkers 7: 68–79.CrossRefGoogle Scholar
  319. Staempfli C, Tarradellas J, Becker-van Slooten K (2007) Effects of dinoseb on energy reserves in the soil arthropod Folsomia candida. Ecotoxicol Environ Saf 68: 263–271.CrossRefGoogle Scholar
  320. Stalder L, Pestemer W (1980) Availability to plants of herbicide residues in soil. Part I: A rapid method for estimating potentially available residues of herbicides. Weed Res 20: 341–347.CrossRefGoogle Scholar
  321. Stehouwer RC, Dick WA, Traina SJ (1993) Characteristics of earthworm burrow lining affecting atrazine sorption. J Environ Qual 22: 181–185.CrossRefGoogle Scholar
  322. Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores. Environ Sci Technol 21: 1201–1208.CrossRefGoogle Scholar
  323. Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65: 163–168.Google Scholar
  324. Stenersen J, Oeien N (1980) Action of pesticides on earthworms: Part IV. Uptake and elimination of oxamyl compared with carbofuran. Pest Sci 11: 396–400.CrossRefGoogle Scholar
  325. Stokes JD, Paton GI, Semple KT (2005) Behaviour and assessment of bioavailability of organic contaminants in soil: Relevance for risk assessment and remediation. Soil Use Manage 21(Suppl. 2): 475–486.CrossRefGoogle Scholar
  326. Streibig JC (1979) Some properties influencing soil adsorption and phytotoxicity of atrazine and simazine in nine Danish soils. Acta Agric Scand 29: 33–41.CrossRefGoogle Scholar
  327. Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53: 292–297.Google Scholar
  328. Subba-Rao RV, Alexander M (1982) Effect of sorption on mineralization of low concentrations of aromatic compounds in lake water samples. Appl Environ Microbiol 44: 659–668.Google Scholar
  329. Sutter GR, Steward JW (1995) Toxicity of insecticides to larvae of the Mexican corn rootworm in a soil bioassay. Southwest Entomol 20: 1–4.Google Scholar
  330. Szmigielska AM, Schoenau JJ, Greer K (1998) Comparison of chemical extraction and bioassay for measurement of metsulfuron in soil. Weed Sci 46: 487–493.Google Scholar
  331. Tamminen MV, Virta MPJ (2007) Quantification of ecotoxicological tests based on bioluminescence using Polaroid film. Chemosphere 66: 1329–1335.CrossRefGoogle Scholar
  332. Tang J, Alexander M (1999) Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 18: 2711–2714.CrossRefGoogle Scholar
  333. Tang J, Carroquino MJ, Robertson BK, Alexander M (1998) Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 32: 3586–3590.CrossRefGoogle Scholar
  334. Tang J, Robertson BK, Alexander M (1999) Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ Sci Technol 33: 4346–4351.CrossRefGoogle Scholar
  335. Teisseire H, Couderchet M, Vernet G (6 May 1997) Mededelingen- Faculteit-Landbouwkundige en Toegepaste-Biologische-Wetenschappen. Proceedings of the 49th International Symposium on Crop Protection, 62:2a: 243–249, Gent, Belgium, Universiteit Gent.Google Scholar
  336. Thomas JM, Yordy JR, Amador JA, Alexander M (1986) Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl Environ Microbiol 52: 290–296.Google Scholar
  337. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60: 258–263.Google Scholar
  338. Tiehm A, Fritzsche C (1995) Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl Microbiol Biotechnol 42: 964–968.CrossRefGoogle Scholar
  339. Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31: 2570–2576.CrossRefGoogle Scholar
  340. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661–663.CrossRefGoogle Scholar
  341. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81: 2280–2284.CrossRefGoogle Scholar
  342. Tinsley IJ (1979) Chemical concepts in pollutant behavior. John Wiley & Sons, New York, pp.265.Google Scholar
  343. Toba FA, Hay AG (2005) A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Methods 62: 135–143.CrossRefGoogle Scholar
  344. Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56: 767–778.CrossRefGoogle Scholar
  345. Trapp S, Larsen M, Christiansen H (2001) Experimental data on the kinetics of the degradation of cyanide after uptake in plants (research articles). Umweltwissenschaften und Schadstoff-Forschung 13: 29–37.CrossRefGoogle Scholar
  346. Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29: 2333–2338.CrossRefGoogle Scholar
  347. Trapp S, Mc Farlane C, Matthies M (1994) Model for uptake of xenobiotics into plants: Validation with bromacil experiments. Environ Toxicol Chem 13: 413–422.CrossRefGoogle Scholar
  348. Tsomides HJ, Hughes JB, Thomas JM, Ward CH (1995) Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ Toxicol Chem 14: 953–959.CrossRefGoogle Scholar
  349. US Environmental Protection Agency (1991) Standard default exposure factors. OSWER Directive 9285.6–03.Google Scholar
  350. US Environmental Protection Agency (1997) Exposure Factors Handbook. Update to Exposure Factors Handbook, May 1989. Office of Research and Development. EPA/600/P-95/002Fa.Google Scholar
  351. Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71: 3797–3805.CrossRefGoogle Scholar
  352. Van Brummelen TC, Verweij RA, Wedzinga SA, Van Gestel CAM (1996) Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 32: 315–341.CrossRefGoogle Scholar
  353. Van Der Oost R, Opperhuizen A, Satumalay K, Heida H, Vermeulen NPE (1996) Biomonitoring aquatic pollution with feral eel (Anguilla anguilla). I. Bioaccumulation: Biota-sediment ratios of PCBs, OCPs, PCDDs and PCDFs. Aquat Toxicol 35: 21–46.CrossRefGoogle Scholar
  354. Van der Wal L, Jager T, Fleuren RHLJ, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38: 4828–4848.CrossRefGoogle Scholar
  355. van Gestel CAM, Ma W (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotoxicol Environ Saf 15: 289–297.CrossRefGoogle Scholar
  356. Vencill WK, Banks PA (1994) Dissipation of chlorimuron in southern soils. Weed Sci 42: 625–628.Google Scholar
  357. Verma A, Pillai M (1991) Bioavailability of soil-bound residues of DDT and HCH to earthworms. Curr Sci 61: 840–843.Google Scholar
  358. Villemur R, Deziel E, Benachenhou A, Marcoux J, Gauthier E, Lepine F, Beaudet R, Comeau Y (2000) Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil. Biotechnol Prog 16: 966–972.CrossRefGoogle Scholar
  359. Vizantinopoulos S, Lolos P (1994) Persistence and leaching of the herbicide imazapyr in soil. Bull Environ Contam Toxicol 52: 404–410.CrossRefGoogle Scholar
  360. Walker EL (2002) Functional analysis of the Arabidopsis yellow stripe-like (YSL) family. Heavy metal transport and partitioning via metal-nicotianamine (NA) complexes. Plant Physiol 129: 431–432.Google Scholar
  361. Walker A, Jurado-Exposito M (1998) Adsorption of isoproturon, diuron and metsulfuron-methyl in two soils at high soil: Solution ratios. Weed Res 38: 229–238.CrossRefGoogle Scholar
  362. Walker A, Turner IJ, Cullington JE, Welch SJ (1999) Aspects of the adsorption and degradation of isoproturon in a heavy clay soil. Soil Use Manage 15: 9–13.CrossRefGoogle Scholar
  363. Wang J-M, Marlowe E, Miller-Maier R, Brusseau ML (1998) Cyclodextrin-Enhanced Biodegradation of Phenanthrene. Environ Sci Technol 32: 1907–1912.CrossRefGoogle Scholar
  364. Watwood ME, Kay-Shoemake JL (2000) Impact of polyacrylamide treatment on sorptive dynamics and degradation of 2,4-D and atrazine in agricultural soil. J Soil Contam 9: 133–147.CrossRefGoogle Scholar
  365. Wauchope RD, Yeh S, Linders JBH, Kloskowski T, Tanaka K, Rubin B, Katayama A, Koerdel W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: Theory, measurement, uses, limitations and reliability. Pest Manag Sci 58: 419–445.CrossRefGoogle Scholar
  366. Weber JB, Weed SB (1974) Effects of soil on the biological activity of pesticides. In: Guenzi WD (ed) Pesticides in soil and water. Soil Science Society of America, Inc., Madison, WI, pp. 223–256.Google Scholar
  367. Weed SB, Weber JB (1974) Pesticide-organic matter interactions. In: Guenzi WD (ed.) Pesticides in soil and water. Soil Science Society of America, Inc., Madison, WI, pp. 39–66.Google Scholar
  368. Weissenhorn I, Leyval C, Berthelin J (1995a) Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19: 22–28.CrossRefGoogle Scholar
  369. Weissenhorn I, Mench M, Leyval C (1995b) Bioavailability of heavy metals and arbuscular mycorrhiza in a sewage-sludge-amended sandy soil. Soil Biol Biochem 27: 287–296.CrossRefGoogle Scholar
  370. Welhouse GJ, Bleam WF (1993) Cooperative hydrogen bonding of atrazine. Environ Sci Technol 27: 500–505.CrossRefGoogle Scholar
  371. White JC, Alexander M, Pignatello JJ (1999a) Enhancing the bioavailability of organic compounds sequestered in soil and aquifer solids. Environ Toxicol Chem 18: 182–187.CrossRefGoogle Scholar
  372. White JC, Hunter M, Nam K, Pignatello JJ, Alexander M (1999b) Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environ Toxicol Chem 18: 1720–1727.CrossRefGoogle Scholar
  373. White JC, Hunter M, Pignatello JJ, Alexander M (1999c) Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene. Environ Toxicol Chem 18: 1728–1732.CrossRefGoogle Scholar
  374. White JC, Kelsey JW, Hatzinger PB, Alexander M (1997) Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ Toxicol Chem 16: 2040–2045.CrossRefGoogle Scholar
  375. White JC, Quinones-Rivera A, Alexander M (1998) Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil. Environ Toxicol Chem 17: 2378–2382.CrossRefGoogle Scholar
  376. Wiles JA, Jepson PC (1993a) The dietary toxicity of deltamethrin to the carabid, Nebria brevicollis (F.). Pest Sci 38: 329–334.CrossRefGoogle Scholar
  377. Wiles JA, Jepson PC (1993b) Predicting the short-term toxicity of deltamethrin to Nebria brevicollis (F.) (Coeloptera: Carabidae) in a temperate cereal crop. Sci Total Environ 134(Suppl. 2): 823–831.Google Scholar
  378. Willumsen B, Gray MR, Dudas MJ (1997) Biological degradation of anthracene in soil after sorption from non-aqueous phase liquids. Environ Technol 18: 755–762.CrossRefGoogle Scholar
  379. Winder L, Hirst DJ, Carter N, Wratten SD, Sopp PI (1994) Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. J Appl Ecol 31: 1–12.CrossRefGoogle Scholar
  380. Wong DCL, Dorn PB, Chai EY (1997) Acute toxicity and structure-activity relationships of nine alcohol ethoxylate surfactants to farthead minnow and Daphina magna.. Environ Toxicol Chem 16: 1970–1976.Google Scholar
  381. Wszolek PC, Alexander M (1979) Effect of desorption rate on the biodegradation of n-alkylamines bound to clay. J Agric Food Chem 27: 410–414.CrossRefGoogle Scholar
  382. Wybieralski J (1992) The formulation effect of propoxur on leaching as a function of soil properties. Sci Total Environ 123: 513–518.CrossRefGoogle Scholar
  383. Xiang TX, Anderson BD (1994) The relationship between permeant size and permeability in lipid bilayer-membranes. J Membrane Biol 140: 111–122.CrossRefGoogle Scholar
  384. Yarden O, Freund M, Rubin B (1993) Dunaliella salina: A convenient test organism for detection of pesticides residues in water and soil. Fresenius Environ Bull 2: 31–36.Google Scholar
  385. Yazgan MS, Wilkins RM, Sykas C, Hoque E (2005) Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran. Chemosphere 60: 1325–1331.CrossRefGoogle Scholar
  386. You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40: 6348–6353.CrossRefGoogle Scholar
  387. You J, Landrum PE, Trimble TA, Lydy MJ (2007b) Availability of polychlorinated biphenyls in field-contaminated sediment. Environ Toxicol Chem 26: 1940–1948.CrossRefGoogle Scholar
  388. You I, Pehkonen S, Landrum PF, Lydy MJ (2007a) Desorption of hydrophobic compounds from laboratory-spiked sediments measured by tenax absorbent and matrix solid-phase microextraction. Environ Sci Technol 41: 5672–5678.CrossRefGoogle Scholar
  389. Young SD, Zhang H, Tye AM, Maxted A, Thums C, Thornton I (2005) Characterizing the availability of metals in contaminated soils. I. The solid phase: Sequential extraction and isotopic dilution. Soil Use Manage 21: 450–458.CrossRefGoogle Scholar
  390. Yu YL, Wu XM, Li SN, Fang H, Tan YJ, Yu JQ (2005) Bioavailability of butachlor and myclobutanil residues in soil to earthworms. Chemosphere 59: 961–967.CrossRefGoogle Scholar
  391. Yucheng F, Park JH, Voice TC, Boyd S (2000) Bioavailability of soil sorbed biphenyl to bacteria. Environ Sci Technol 34: 1977–1984.CrossRefGoogle Scholar
  392. Zang Y, Zhong Y, Luo Y, Kong ZM (2000) Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ Pollut 108: 271–278.CrossRefGoogle Scholar
  393. Zhang B, Smith PN, Anderson TA (2006) Evaluating the bioavailability of explosive metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), in soils using passive sampling devices. J Chrom A 1101: 38–45.CrossRefGoogle Scholar
  394. Zhao X, Szafranski MJ, Maraqa MA, Voice TC (1999) Sorption and bioavailability of carbon tetrachloride in a low organic content sandy soil. Environ Toxicol Chem 18: 1755–1762.CrossRefGoogle Scholar
  395. Zhao X, Voice TC (2000) Assessment of bioavailability using a multicolumn system. Environ Sci Technol 34: 1506–1512.CrossRefGoogle Scholar
  396. Zheng Z, Obbard JP (2000) Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium. J Chem Technol Biotechnol 75: 1183–1189.CrossRefGoogle Scholar
  397. Zheng Z, Obbard JP (2001) Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76: 423–429.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arata Katayama
    • 1
  • Raj Bhula
    • 2
  • G. Richard Burns
    • 3
  • Elizabeth Carazo
    • 4
  • Allan Felsot
    • 5
  • Denis Hamilton
    • 6
  • Caroline Harris
    • 7
  • Yong-Hwa Kim
    • 8
  • Gijs Kleter
    • 9
  • Werner Koedel
    • 10
  • Jan Linders
    • 11
  • J G M. Willie Peijnenburg
    • 11
  • Aleksandar Sabljic
    • 12
  • R. Gerald Stephenson
    • 13
  • D. Kenneth Racke
    • 14
  • Baruch Rubin
    • 15
  • Keiji Tanaka
    • 16
  • John Unsworth
    • 17
  • R. Donald Wauchope
    • 18
  1. 1.EcoTopia Science Institute, Nagoya UniversityNagoyaJapan
  2. 2.Australian Pesticides and Veterinary Medicines AuthorityKingstonAustralia
  3. 3.Research School of BiosciencesUniversity of KentCanterburyUK
  4. 4.Centro de Investigacion en Contaminacion AmbientalUniversidad de Costa Rica, Ciudad Universitaria “Rodrigo Facio”San JoseCosta Rica
  5. 5.Entomology/Environmental ToxicologyWashington State UniversityRichlandUSA
  6. 6.Department of Primary Industries and FisheriesBiosecurityBrisbaneAustralia
  7. 7.Exponent International LtdHarrogateUK
  8. 8.Environmental Toxicology Team, Toxicology Research CenterKorea Research Institute of Chemical TechnologyTaejonRepublic of Korea
  9. 9.RIKILT – Institute of Food SafetyWageningen University and Research CenterWageningenThe Netherlands
  10. 10.Fraunhofer-Institute Molecular Biology and Applied EcologySchmallenbergGermany
  11. 11.National Institute for Public Health and EnvironmentBilthovenThe Netherlands
  12. 12.Institute Rudjer BoskovicZagrebCroatia
  13. 13.Department of Environmental BiologyUniversity of GuelphGuelphCanada
  14. 14.Dow AgroSciencesIndianapolisUSA
  15. 15.Faculty of Agricultural, Food and Environmental SciencesRH Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovotIsrael
  16. 16.Sankyo Agro Co, LtdShiga-kenJapan
  17. 17.ChelmsfordUK
  18. 18.Research ChemistUSDA-Agricultural Research ServiceTiftonUSA

Personalised recommendations