Around the Research of Vladimir Maz'ya II pp 315-336

Part of the International Mathematical Series book series (IMAT, volume 12)

Hölder Estimates for Green’s Matrix of the Stokes System in Convex Polyhedra



The paper deals with Green’s matrix of the Dirichlet problem forthe Stokes system in a polyhedron. In particular, Höolder estimates for thederivatives of the elements of this matrix are obtained in the case where thepolyhedronis convex.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- and three-dimensional with corners. Part 1: Linearized equations. SIAM J. Math. Anal. 20, 74–97 (1989)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.-H.: Hölder estimates for Green's functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112, 221–243 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kozlov, V.A., Maz'ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Am. Math. Soc., Providence, RI (2001)MATHGoogle Scholar
  4. 4.
    Kozlov, V.A., Maz'ya, V.G., Schwab, C.: On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone. J. Rein. Angew. Math. 456, 65–97 (1994)MathSciNetMATHGoogle Scholar
  5. 5.
    Maz'ya, V.G., Plamenevskii, B.A.: Estimates of Green's functions and Schauder estimates for solutions of elliptic boundary value problems in a dihedral angle (Russian). Sib. Mat. Zh. 19, no. 5, 1064–1082 (1978); English transl.: Sib. Math. J. 19, 752–764 (1979)MATHGoogle Scholar
  6. 6.
    Maz'ya, V.G., Plamenevskii, B.A.: Schauder estimations of solutions of elliptic boundary value problems in domains with edges on the boundary (Russian). Tr. Semin. S.L. Soboleva 1978, No. 2, 69–102 (1978); English transl.: Am. Math. Soc. Transl. 123, 141–169 (1984)Google Scholar
  7. 7.
    Maz'ya, V.G., Plamenevskii, B.A.: On the asymptotics of the fundamental solutions of elliptic boundary value problems in regtions with conical points (Russian). Probl. Mat. Anal. 7, 100–145 (1979); English transl.: Sel. Math. Sov. 4 363–397 (1985)MATHGoogle Scholar
  8. 8.
    Maz'ya, V.G., Plamenevskii, B.A.: On properties of solutions of three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points (Russian). Dinam. Sploshn. Sred. 50, 99–120 (1981); English transl.: Am. Math. Soc. Transl. (2) 123, 109–123 (1984).Google Scholar
  9. 9.
    Maz'ya, V.G., Plamenevskii, B.A.: The first boundary value problem for classical equations of mathematical physics in domains with piecewise smooth boundaries. Part 1: Z. Anal. Anwend. 2, no. 4, 335–359 (1983); Part 2. ibid 2, no. 6, 523–551 (1983)MathSciNetMATHGoogle Scholar
  10. 10.
    Maz'ya, V.G., Roßmann (Rossmann), J.: Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten. Math. Nachr. 138, 27–53 (1988)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Maz'ya, V.G., Roßmann (Rossmann), J.: On the Agmon–Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains. Ann. Global Anal. Geom. 9, 253–303 (1991)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Maz'ya, V.G., Rossmann, J.: Point estimates for Green's matrix to boundary value problems for second order elliptic systems in a polyhedral cone. Z. Angew. Math. Mech. 82, no. 5, 291–316 (2002)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Maz'ya, V.G., Rossmann, J.: Pointwise estimates for Green's kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone. Math. Nachr. 278, no. 15, 1766–1810 (2005)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Maz'ya, V.G., Rossmann, J.: L p estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, no. 7, 751–793 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Maz'ya, V.G., Rossmann, J.: Mixed boundary value problems for the Navier-Stokes system in polyhedral domains. Arch. Ration. Mech. Anal. [To appear]Google Scholar
  16. 16.
    Rossmann, J.: On two classes of weighted Sobolev-Slobodetskiĭ spaces in a dihedral angle. Partial Differential Equations, Branch Center Publications 27, 399–424 (1992)MathSciNetGoogle Scholar
  17. 17.
    Verzhbinskii, G.M., Maz'ya, V.G.: On the asymptotics of solutions of the Dirichlet problem near a nonregular boundary. Dokl. Akad. Nauk SSSR 176, no. 3, 498–501 (1967)MathSciNetGoogle Scholar
  18. 18.
    Verzhbinskii, G.M., Maz'ya, V.G.: Asymptotic behaviour of solutions of elliptic equations of second order near the boundary I, II (Russian). Sib. Mat. Zh. 12, no. 6, 1217–1249, (1971); ibid 13, no. 6, 1239–1271 (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of Rostock, Institute of MathematicsRostockGermany

Personalised recommendations