NCAM in Neuropsychiatric and Neurodegenerative Disorders

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)

Abstract

The neural cell adhesion molecule (NCAM) has roles in normal brain development, including axonal/dendritic growth and branching and synaptic plasticity. A growing body of evidence has implicated NCAM as a susceptible risk for neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, and anxiety disorder, as well as the most prevalent neurodegenerative disease, Alzheimer’s disease. While individuals with these diseases vary in symptoms, age of onset, treatment, and neuronal systems affected, they share cognitive dysfunction as a core feature. This review will highlight the evidence for NCAM in the cause or progression of each of these disorders.

Keywords

NCAM Schizophrenia Bipolar disorder Depression Anxiety disorder Alzheimer’s disease 

Notes

Acknowledgments

This work was supported by the UNC Schizophrenia Research Center, an NIMH Silvio O. Conte Center for the Neuroscience of Mental Disorders, (NIH grant MH064065 P.F.M.).

References

  1. 1.
    Hinkle CL, Maness PF (2006) Regulation of neural cell adhesion molecule function by ectodomain shedding. In: Pandalai SG (ed) Recent research developments in molecular and cellular biology. Research Signpost, Kerala, India, pp 121-136Google Scholar
  2. 2.
    Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19-26PubMedGoogle Scholar
  3. 3.
    Cremer H, Chazal G, Lledo PM, Rougon G, Montaron MF, Mayo W, Le Moal M, Abrous DN (2000) PSA-NCAM: an important regulator of hippocampal plasticity. Int J Dev Neurosci 18:213-220PubMedGoogle Scholar
  4. 4.
    Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neurosci 1444:788-796Google Scholar
  5. 5.
    Polo-Parada L, Bose CM, Plattner F, Landmesser LT (2004) Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci 24:1852-1864PubMedGoogle Scholar
  6. 6.
    Stork O, Welzl H, Wolfer D, Schuster T, Mantei N, Stork S, Hoyer D, Lipp H, Obata K, Schachner M (2000) Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. Eur J Neurosci 12:3291-3306PubMedGoogle Scholar
  7. 7.
    Freedman R (2003) Schizophrenia. N Engl J Med 349:1738-1749PubMedGoogle Scholar
  8. 8.
    Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312-324PubMedGoogle Scholar
  9. 9.
    Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372-1376PubMedGoogle Scholar
  10. 10.
    Barch DM (2005) The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol 1:321-353PubMedGoogle Scholar
  11. 11.
    Lewis DA, Gonzalez-Burgos G (2007) Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33:141-165PubMedGoogle Scholar
  12. 12.
    Reynolds GP, Harte MK (2007) The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans 35:433-436PubMedGoogle Scholar
  13. 13.
    Tenn CC, Fletcher PJ, Kapur S (2005) A putative animal model of the “prodromal” state of schizophrenia. Biol Psychiatry 57:586-593PubMedGoogle Scholar
  14. 14.
    Muglia P, Macciardi F, Kennedy JL (1999) The neurodevelopmental hypothesis of schizophrenia: genetic investigations. CNS Spectrum 4:78-90Google Scholar
  15. 15.
    Marenco S, Weinberger DR (2000) The neurodevelopmental hypothesis of schizophrenia: following trail of evidence from cradle to grave. Dev Psychopathol 12:501-527PubMedGoogle Scholar
  16. 16.
    Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ (1999) Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol Psychiatry 4:467-475PubMedGoogle Scholar
  17. 17.
    Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1-27PubMedGoogle Scholar
  18. 18.
    Daskalakis ZJ, Fitzgerald PB, Christensen BK (2007) The role of cortical inhibition in the pathophysiology and treatment of schizophrenia. Brain Res Rev 56:427-442PubMedGoogle Scholar
  19. 19.
    Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 52:293-304PubMedGoogle Scholar
  20. 20.
    Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793-807PubMedGoogle Scholar
  21. 21.
    Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400-406PubMedGoogle Scholar
  22. 22.
    Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O’Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O’Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin JL, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Bassett AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoega T, Helgason T (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73:34-48PubMedGoogle Scholar
  23. 23.
    Sullivan PF, Keefe RS, Lange LA, Lange EM, Stroup TS, Lieberman J, Maness PF (2007) NCAM1 and neurocognition in schizophrenia. Biol Psychiatry 61:902-910PubMedGoogle Scholar
  24. 24.
    Close BE, Mendiratta SS, Geiger KM, Broom LJ, Ho LL, Colley KJ (2003) The minimal structural domains required for neural cell adhesion molecule polysialylation by PST/ST8Sia IV and STX/ST8Sia II. J Biol Chem 278:30796-30805PubMedGoogle Scholar
  25. 25.
    Mendiratta SS, Sekulic N, Lavie A, Colley KJ (2005) Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. J Biol Chem 280:32340-32348PubMedGoogle Scholar
  26. 26.
    Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, Dion C, Lavallee JC, Garneau Y, Gingras N, Nicole L, Pires A, Ponton AM, Potvin A, Wallot H, Merette C (2005) Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 10:486-499PubMedGoogle Scholar
  27. 27.
    Lindholm E, Aberg K, Ekholm B, Pettersson U, Adolfsson R, Jazin EE (2004) Reconstruction of ancestral haplotypes in a 12-generation schizophrenia pedigree. Psychiatr Genet 14:1-8PubMedGoogle Scholar
  28. 28.
    Arai M, Yamada K, Toyota T, Obata N, Haga S, Yoshida Y, Nakamura K, Minabe Y, Ujike H, Sora I, Ikeda K, Mori N, Yoshikawa T, Itokawa M (2006) Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia. Biol Psychiatry 59:652-659PubMedGoogle Scholar
  29. 29.
    Tao R, Li C, Zheng Y, Qin W, Zhang J, Li X, Xu Y, Shi YY, Feng G, He L (2007) Positive association between SIAT8B and schizophrenia in the Chinese Han population. Schizophr Res 90:108-114PubMedGoogle Scholar
  30. 30.
    Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785-2789PubMedGoogle Scholar
  31. 31.
    Lyons F, Martin ML, Maguire C, Jackson A, Regan CM, Shelley RK (1988) The expression of an N-CAM serum fragment is positively correlated with severity of negative features in type II schizophrenia. Biol Psychiatry 23:769-775PubMedGoogle Scholar
  32. 32.
    Poltorak M, Khoja I, Hemperly JJ, Williams JR, el-Mallakh R, Freed WJ (1995) Disturbances in cell recognition molecules (N-CAM and L1 antigen) in the CSF of patients with schizophrenia. Exp Neurol 131:266-272PubMedGoogle Scholar
  33. 33.
    van Kammen DP, Poltorak M, Kelley ME, Yao JK, Gurklis JA, Peters JL, Hemperly JJ, Wright RD, Freed WJ (1998) Further studies of elevated cerebrospinal fluid neuroral cell adhesion molecule in schizophrenia. Biol Psychiatry 43:680-686PubMedGoogle Scholar
  34. 34.
    Vawter MP, Cannon-Spoor HE, Hemperly JJ, Hyde TM, VanderPutten DM, Kleinman JE, Freed WJ (1998) Abnormal expression of cell recognition molecules in schizophrenia. Exp Neurol 149:424-432PubMedGoogle Scholar
  35. 35.
    Vawter MP, Hemperly JJ, Freed WJ, Garver DL (1998) CSF N-CAM in neuroleptic-naive first-episode patients with schizophrenia. Schizophr Res 34:123-131PubMedGoogle Scholar
  36. 36.
    Vawter MP, Usen N, Thatcher L, Ladenheim B, Zhang P, VanderPutten DM, Conant K, Herman MM, van Kammen DP, Sedvall G, Garver DL, Freed WJ (2001) Characterization of human cleaved N-CAM and association with schizophrenia. Exp Neurol 172:29-46PubMedGoogle Scholar
  37. 37.
    Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78:99-110PubMedGoogle Scholar
  38. 38.
    Hinkle CL, Diestel S, Lieberman J, Maness PF (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66:1378-1395PubMedGoogle Scholar
  39. 39.
    Hubschmann MV, Skladchikova G, Bock E, Berezin V (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80:826-837PubMedGoogle Scholar
  40. 40.
    Kalus I, Bormann U, Mzoughi M, Schachner M, Kleene R (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98:78-88PubMedGoogle Scholar
  41. 41.
    Karkkainen I, Rybnikova E, Pelto-Huikko M, Huovila AP (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol Cell Neurosci 15:547-560PubMedGoogle Scholar
  42. 42.
    Yavari R, Adida C, Bray-Ward P, Brines M, Xu T (1998) Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum Mol Genet 7:1161-1167PubMedGoogle Scholar
  43. 43.
    Cerretti DP, Poindexter K, Castner BJ, Means G, Copeland NG, Gilbert DJ, Jenkins NA, Black RA, Nelson N (1999) Characterization of the cDNA and gene for mouse tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and its location to mouse chromosome 12 and human chromosome 2p25. Cytokine 11:541-551PubMedGoogle Scholar
  44. 44.
    Asai M, Hattori C, Szabo B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun 301:231-235PubMedGoogle Scholar
  45. 45.
    Gilmore JH, van Tol J, Kliewer MA, Silva SG, Cohen SB, Hertzberg BS, Chescheir NC (1998) Mild ventriculomegaly detected in utero with ultrasound: clinical associations and implications for schizophrenia. Schizophr Res 33:133-140PubMedGoogle Scholar
  46. 46.
    Wood GK, Tomasiewicz H, Rutishauser U, Magnuson T, Quirion R, Rochford J, Srivastava LK (1998) NCAM-180 knockout mice display increased lateral ventricle size and reduced prepulse inhibition of startle. Neuroreport 9:461-466PubMedGoogle Scholar
  47. 47.
    Rafuse VF, Polo-Parada L, Landmesser LT (2000) Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J Neurosci 20:6529-6539PubMedGoogle Scholar
  48. 48.
    Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446-1457PubMedGoogle Scholar
  49. 49.
    Stork O, Welzl H, Wotjak CT, Hoyer D, Delling M, Cremer H, Schachner M (1999) Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. J Neurobiol 40:343-355PubMedGoogle Scholar
  50. 50.
    Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, Wotjak CT, Schweizer M, Dityatev A, Schachner M (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24:1565-1577PubMedGoogle Scholar
  51. 51.
    Lüthi A, Laurent JP, Figurov A, Muller D, Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777-779Google Scholar
  52. 52.
    Ronn LC, Bock E, Linnemann D, Jahnsen H (1995) NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res 677:145-151PubMedGoogle Scholar
  53. 53.
    Pillai-Nair N, Panicker AK, Rodriguiz RM, Gilmore KL, Demyanenko GP, Huang JZ, Wetsel WC, Maness PF (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J Neurosci 25:4659-4671PubMedGoogle Scholar
  54. 54.
    Brennaman LH, Maness PF (2008) Developmental regulation of GABAergic interneuron branching and synaptic development in the prefrontal cortex by soluble neural cell adhesion molecule. Mol Cell Neurosci 37:781-793 doi: 10.1016/j.mcn.2008.01.006 PubMedGoogle Scholar
  55. 55.
    Leahy RL (2007) Bipolar disorder: causes, contexts, and treatments. J Clin Psychol 63:417-424PubMedGoogle Scholar
  56. 56.
    Oswald P, Souery D, Kasper S, Lecrubier Y, Montgomery S, Wyckaert S, Zohar J, Mendlewicz J (2007) Current issues in bipolar disorder: a critical review. Eur Neuropsychopharmacol 17:687-695PubMedGoogle Scholar
  57. 57.
    Farmer A, Elkin A, McGuffin P (2007) The genetics of bipolar affective disorder. Curr Opin Psychiatry 20:8-12PubMedGoogle Scholar
  58. 58.
    Arai M, Itokawa M, Yamada K, Toyota T, Haga S, Ujike H, Sora I, Ikeda K, Yoshikawa T (2004) Association of neural cell adhesion molecule 1 gene polymorphisms with bipolar affective disorder in Japanese individuals. Biol Psychiatry 55:804-810PubMedGoogle Scholar
  59. 59.
    Atz ME, Rollins B, Vawter MP (2007) NCAM1 association study of bipolar disorder and schizophrenia: polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet 17:55-67PubMedGoogle Scholar
  60. 60.
    Poltorak M, Frye MA, Wright R, Hemperly JJ, George MS, Pazzaglia PJ, Jerrels SA, Post RM, Freed WJ (1996) Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem 66:1532-1538PubMedGoogle Scholar
  61. 61.
    Vawter MP, Hemperly JJ, Hyde TM, Bachus SE, VanderPutten DM, Howard AL, Cannon-Spoor HE, McCoy MT, Webster MJ, Kleinman JE, Freed WJ (1998) VASE-containing N-CAM isoforms are increased in the hippocampus in bipolar disorder but not schizophrenia. Exp Neurol 154:1-11PubMedGoogle Scholar
  62. 62.
    Doherty P, Moolenaar CECK, Ashhton SV, Michalides RJAM, Walsh FS (1992) The VASE exon downregulates the neurite growth-promoting activity of NCAM 140. Nature 356:791-793PubMedGoogle Scholar
  63. 63.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV [Text revision]. American Psychiatric Association, Washington, DCGoogle Scholar
  64. 64.
    To SE, Zepf RA, Woods AG (2005) The symptoms, neurobiology, and current pharmacological treatment of depression. J Neurosci Nurs 37:102-107PubMedGoogle Scholar
  65. 65.
    Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391-418PubMedGoogle Scholar
  66. 66.
    Sandi C, Bisaz R (2007) A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology 85:158-176PubMedGoogle Scholar
  67. 67.
    Conover JC, Yancopoulos GD (1997) Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev Neurosci 8:13-27PubMedGoogle Scholar
  68. 68.
    Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172-178PubMedGoogle Scholar
  69. 69.
    McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767-778PubMedGoogle Scholar
  70. 70.
    McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791-803PubMedGoogle Scholar
  71. 71.
    Kiss JZ, Troncoso E, Djebbara Z, Vutskits L, Muller D (2001) The role of neural cell adhesion molecules in plasticity and repair. Brain Res Brain Res Rev 36:175-184PubMedGoogle Scholar
  72. 72.
    Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30-51PubMedGoogle Scholar
  73. 73.
    Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18-21PubMedGoogle Scholar
  74. 74.
    Mamounas LA, Blue ME, Siuciak JA, Altar CA (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15:7929-7939PubMedGoogle Scholar
  75. 75.
    Mamounas LA, Altar CA, Blue ME, Kaplan DR, Tessarollo L, Lyons WE (2000) BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20:771-782PubMedGoogle Scholar
  76. 76.
    Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res 710:11-20PubMedGoogle Scholar
  77. 77.
    Siuciak JA, Clark MS, Rind HB, Whittemore SR, Russo AF (1998) BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. J Neurosci Res 52:149-158PubMedGoogle Scholar
  78. 78.
    Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349-357PubMedGoogle Scholar
  79. 79.
    Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 96:15239-15244PubMedGoogle Scholar
  80. 80.
    Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241-246PubMedGoogle Scholar
  81. 81.
    Stone EA (2007) A final common pathway for depression: implications for therapy. Expert Opin Ther Targets 11:1019-1032PubMedGoogle Scholar
  82. 82.
    Stone EA, Lin Y, Quartermain D (2007) A final common pathway for depression? progress toward a general conceptual framework. Neurosci Biobehav Rev 32:508-524 doi: 10.1016/j.neubiorev.2007.08.007 PubMedGoogle Scholar
  83. 83.
    Varea E, Blasco-Ibanez JM, Gomez-Climent MA, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 32:803-812PubMedGoogle Scholar
  84. 84.
    Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol 17:546-557PubMedGoogle Scholar
  85. 85.
    Sairanen M, O’Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368-374PubMedGoogle Scholar
  86. 86.
    Stork O, Welzl H, Cremer H, Schachner M (1997) Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecules. Eur J Neurosci 9:424-434Google Scholar
  87. 87.
    Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 45:143-152PubMedGoogle Scholar
  88. 88.
    Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413-422PubMedGoogle Scholar
  89. 89.
    Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Barthels D, Rajewsky K, Wille W (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-459PubMedGoogle Scholar
  90. 90.
    Sandi C, Loscertales M (1999) Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 828:127-134PubMedGoogle Scholar
  91. 91.
    Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C (2001) Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience 102:329-339PubMedGoogle Scholar
  92. 92.
    Venero C, Tilling T, Hermans-Borgmeyer I, Schmidt R, Schachner M, Sandi C (2002) Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience 115:1211-1219PubMedGoogle Scholar
  93. 93.
    Touyarot K, Venero C, Sandi C (2004) Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates. Psychoneuroendocrinology 29:290-305PubMedGoogle Scholar
  94. 94.
    Tsoory M, Guterman A, Richter-Levin G (2008) Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology 33:378-393PubMedGoogle Scholar
  95. 95.
    Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC (2006) Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 59:244-251PubMedGoogle Scholar
  96. 96.
    Macias M, Fehr S, Dwornik A, Sulejczak D, Wiater M, Czarkowska-Bauch J, Skup M, Schachner M (2002) Exercise increases mRNA levels for adhesion molecules N-CAM and L1 correlating with BDNF response. Neuroreport 13:2527-2530PubMedGoogle Scholar
  97. 97.
    Koponen E, Rantamaki T, Voikar V, Saarelainen T, MacDonald E, Castren E (2005) Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 25:973-980PubMedGoogle Scholar
  98. 98.
    Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251-3261PubMedGoogle Scholar
  99. 99.
    Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ (2007) PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134:1181-1190PubMedGoogle Scholar
  100. 100.
    Glaser T, Brose C, Franceschini I, Hamann K, Smorodchenko A, Zipp F, Dubois-Dalcq M, Brustle O (2007) Neural cell adhesion molecule polysialylation enhances the sensitivity of embryonic stem cell-derived neural precursors to migration guidance cues. Stem Cells 25:3016-3025PubMedGoogle Scholar
  101. 101.
    Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97:4315-4320PubMedGoogle Scholar
  102. 102.
    Vutskits L, Djebbara-Hannas Z, Zhang H, Pacccaud JP, Durbec P, Rougon G, Muller D, Kiss JZ (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J Neurosci 13:1391-1402PubMedGoogle Scholar
  103. 103.
    Jorgensen OS (1988) Neural cell adhesion molecule (NCAM) and prealbumin in cerebrospinal fluid from depressed patients. Acta Psychiatr Scand Suppl 345:29-37PubMedGoogle Scholar
  104. 104.
    Bienvenu OJ, Ginsburg GS (2007) Prevention of anxiety disorders. Int Rev Psychiatry 19:647-654PubMedGoogle Scholar
  105. 105.
    Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11:307-316PubMedGoogle Scholar
  106. 106.
    Garakani A, Mathew SJ, Charney DS (2006) Neurobiology of anxiety disorders and implications for treatment. Mt Sinai J Med 73:941-949PubMedGoogle Scholar
  107. 107.
    Berkowitz RL, Coplan JD, Reddy DP, Gorman JM (2007) The human dimension: how the prefrontal cortex modulates the subcortical fear response. Rev Neurosci 18:191-207PubMedGoogle Scholar
  108. 108.
    Akirav I, Maroun M (2007) The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast 2007:30873PubMedGoogle Scholar
  109. 109.
    Quirk GJ, Gehlert DR (2003) Inhibition of the amygdala: key to pathological states? Ann NY Acad Sci 985:263-272PubMedGoogle Scholar
  110. 110.
    Delgado MR, Olsson A, Phelps EA (2006) Extending animal models of fear conditioning to humans. Biol Psychol 73:39-48PubMedGoogle Scholar
  111. 111.
    Rizhova L, Klementiev B, Cambon K, Venero C, Sandi C, Vershinina E, Vaudano E, Berezin V, Bock E (2007) Effects of P2, a peptide derived from a homophilic binding site in the neural cell adhesion molecule on learning and memory in rats. Neuroscience 149:931-942PubMedGoogle Scholar
  112. 112.
    Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777-781PubMedGoogle Scholar
  113. 113.
    Yaari R, Corey-Bloom J (2007) Alzheimer’s disease. Semin Neurol 27:32-41PubMedGoogle Scholar
  114. 114.
    Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145:209-224PubMedGoogle Scholar
  115. 115.
    Gillian AM, Brion JP, Breen KC (1994) Expression of the neural cell adhesion molecule (NCAM) in Alzheimer’s disease. Neurodegeneration 3:283-291PubMedGoogle Scholar
  116. 116.
    Yew DT, Li WP, Webb SE, Lai HW, Zhang L (1999) Neurotransmitters, peptides, and neural cell adhesion molecules in the cortices of normal elderly humans and Alzheimer patients: a comparison. Exp Gerontol 34:117-133PubMedGoogle Scholar
  117. 117.
    Cotman CW, Hailer NP, Pfister KK, Soltesz I, Schachner M (1998) Cell adhesion molecules in neural plasticity and pathology: similar mechanisms, distinct organizations? Prog Neurobiol 55:659-669PubMedGoogle Scholar
  118. 118.
    Murphy KJ, Foley AG, O’Connell AW, Regan CM (2006) Chronic exposure of rats to cognition enhancing drugs produces a neuroplastic response identical to that obtained by complex environment rearing. Neuropsychopharmacology 31:90-100PubMedGoogle Scholar
  119. 119.
    Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343-347PubMedGoogle Scholar
  120. 120.
    Mikkonen M, Soininen H, Tapiola T, Alafuzoff I, Miettinen R (1999) Hippocampal plasticity in Alzheimer’s disease: changes in highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur J Neurosci 11:1754-1764PubMedGoogle Scholar
  121. 121.
    Strekalova H, Buhmann C, Kleene R, Eggers C, Saffell J, Hemperly J, Weiller C, Muller-Thomsen T, Schachner M (2006) Elevated levels of neural recognition molecule L1 in the cerebrospinal fluid of patients with Alzheimer disease and other dementia syndromes. Neurobiol Aging 27:1-9PubMedGoogle Scholar
  122. 122.
    Todaro L, Puricelli L, Gioseffi H, Guadalupe Pallotta M, Lastiri J, Bal de Kier Joffe E, Varela M, Sacerdote de Lustig E (2004) Neural cell adhesion molecule in human serum. Increased levels in dementia of the Alzheimer type. Neurobiol Dis 15:387-393PubMedGoogle Scholar
  123. 123.
    Mirnics ZK, Yan C, Portugal C, Kim TW, Saragovi HU, Sisodia SS, Mirnics K, Schor NF (2005) P75 neurotrophin receptor regulates expression of neural cell adhesion molecule 1. Neurobiol Dis 20:969-985PubMedGoogle Scholar
  124. 124.
    Geyer H, Bahr U, Liedtke S, Schachner M, Geyer R (2001) Core structures of polysialylated glycans present in neural cell adhesion molecule from newborn mouse brain. Eur J Biochem 268:6587-6599PubMedGoogle Scholar
  125. 125.
    Strekalova T, Wotjak CT, Schachner M (2001) Intrahippocampal administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. Mol Cell Neurosci 17:1102-1113PubMedGoogle Scholar
  126. 126.
    Thomas SN, Soreghan BA, Nistor M, Sarsoza F, Head E, Yang AJ (2005) Reduced neuronal expression of synaptic transmission modulator HNK-1/neural cell adhesion molecule as a potential consequence of amyloid beta-mediated oxidative stress: a proteomic approach. J Neurochem 92:705-717PubMedGoogle Scholar
  127. 127.
    Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24:4197-4204PubMedGoogle Scholar
  128. 128.
    Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyov VV, Berezin V, Bock E (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 91:920-935PubMedGoogle Scholar
  129. 129.
    Popov VI, Medvedev NI, Kraev IV, Gabbott PL, Davies HA, Lynch M, Cowley TR, Berezin V, Bock E, Stewart MG (2008) A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study. Eur J Neurosci 27:301-314PubMedGoogle Scholar
  130. 130.
    Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227-7235PubMedGoogle Scholar
  131. 131.
    Eckhardt M, Bukalo O, Chazal G, Wang L, Goridis C, Schachner M, Gerardy-Schahn R, Cremer H, Dityatev A (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234-5244PubMedGoogle Scholar
  132. 132.
    Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A (2006) In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 23:2255-2264PubMedGoogle Scholar
  133. 133.
    Sandi C, Merino JJ, Cordero MI, Kruyt ND, Murphy KJ, Regan CM (2003) Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol Psychiatry 54:599-607PubMedGoogle Scholar
  134. 134.
    Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cell Biochem 70:304-312PubMedGoogle Scholar
  135. 135.
    Seki T, Rutishauser U (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18:3757-3766PubMedGoogle Scholar
  136. 136.
    Brocco MA, Frasch AC (2006) Interfering polysialyltransferase ST8SiaII/STX mRNA inhibits neurite growth during early hippocampal development. FEBS Lett 580:4723-4726PubMedGoogle Scholar
  137. 137.
    Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372-9382PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillUSA
  2. 2.Silvio Conte Center for Schizophrenia ResearchUniversity of North CarolinaChapel HillUSA

Personalised recommendations