The Antigenome: From Protein Subunit Vaccines to Antibody Treatments of Bacterial Infections?

  • Carmen Giefing
  • Eszter Nagy
  • Alexander von GabainEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 655)


New strategies are needed to master infectious diseases. The so-called “passive vaccination”, i.e., prevention and treatment with specific antibodies, has a proven record and potential in the management of infections and entered the medical arena more than 100 years ago. Progress in the identification of specific antigens has become the hallmark in the development of novel subunit vaccines that often contain only a single immunogen, frequently proteins, derived from the microbe in order to induce protective immunity. On the other hand, the monoclonal antibody technology has enabled biotechnology to produce antibody species in unlimited quantities and at reasonable costs that are more or less identical to their human counterparts and bind with high affinity to only one specific site of a given antigen. Although, this technology has provided a robust platform for launching novel and successful treatments against a variety of devastating diseases, it is up till now only exceptionally employed in therapy of infectious diseases. Monoclonal antibodies engaged in the treatment of specific cancers seem to work by a dual mode; they mark the cancerous cells for decontamination by the immune system, but also block a function that intervenes with cell growth. The availability of the entire genome sequence of pathogens has strongly facilitated the identification of highly specific protein antigens that are suitable targets for neutralizing antibodies, but also often seem to play an important role in the microbe’s life cycle. Thus, the growing repertoire of well-characterized protein antigens will open the perspective to develop monoclonal antibodies against bacterial infections, at least as last resort treatment, when vaccination and antibiotics are no options for prevention or therapy. In the following chapter we describe and compare various technologies regarding the identification of suitable target antigens and the foundation of cognate monoclonal antibodies and discuss their possible applications in the treatment of bacterial infections together with an overview of current efforts.


Human Immunodeficiency Virus Antimicrob Agent Human Antibody Subunit Vaccine Protective Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patti JM. Immunotherapeutics for nosocomial infections. Expert Opin Investig Drugs 2004; 13(6):673–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Tenover FC. Mechanisms of anti-microbial resistance in bacteria. Am J Med 2006; 119(6 Suppl 1):S3–10; discussion S62–70.CrossRefGoogle Scholar
  3. 3.
    Lipsitch M, Samore MH. Antimicrobial use and anti-microbial resistance: a population perspective. Emerg Infect Dis 2002; 8(4):347–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Corbett EL, Watt CJ, Walker N et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003; 163(9):1009–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Casadevall A. Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg Infect Dis 2002; 8(8):833–41.PubMedGoogle Scholar
  6. 6.
    Riedel S. Anthrax: a continuing concern in the era of bioterrorism. Proc (Bayl Univ Med Cent) 2005; 18(3):234–43.Google Scholar
  7. 7.
    Rupprecht CE, Hanlon CA, Hemachudha T. Rabies reexamined. Lancet Infect Dis 2002; 2(6):327–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2004; 2(9):695–703.PubMedCrossRefGoogle Scholar
  9. 9.
    Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000; 13(4):602–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Fry BG, K. D. Winkel, J. C. Wickramaratna et al. Effectiveness of Snake Antivenom: Species and Regional Venom Variation and Its Clinical Impact. Journal of Toxicology 2003; 22(1):23–34.Google Scholar
  11. 11.
    Watt CH. Poisonous snakebite treatment in the United States. JAMA 1978; 240(7):654–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells 2005; 20(1):17–29.PubMedGoogle Scholar
  13. 13.
    Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006; 6(5):343–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Ciardiello F. Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 2005; 1(2):221–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Ennis BW, Lippman ME, Dickson RB. The EGF receptor system as a target for anti-tumor therapy. Cancer Invest 1991; 9(5):553–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23(9):1147–57.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson EL, Kennedy DJ, Geldmacher KM et al. Immunogenicity of heptavalent pneumococal conjugate vaccine in infants. J Pediatr 1996; 128(5 Pt 1):649–53.PubMedGoogle Scholar
  18. 18.
    IMpact-RSV_Study_Group. Prevention of respiratory syncytial virus infections: indications for the use of palivizumab and updata on the use of RSV-IGIV. American Academy of Pediatrics Committee on Infectious Diseases and Committee of Fetus and Newborn. Pediatrics 1998; 102(5):1211–6.CrossRefGoogle Scholar
  19. 19.
    Meinke A, Henics T, Nagy E, Bacterial genomes pave the way to novel vaccines. Curr Opin Microbiol 2004; 7(3):314–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Meinke A, Henics T, Hanner M et al. Antigenome technology: a novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 2005; 23(17–18):2035–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Henics T, Winkler B, Pfeifer U et al. Small-fragment genomic libraries for the display of putative epitopes from clinically significant pathogens. Biotechniques 2003; 35(1):196–202, 204, 206 passim.PubMedGoogle Scholar
  22. 22.
    Etz H, Minh DB, Henics T et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc Natl Acad Sci USA 2002; 99(10):6573–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Kuklin NA, Clark DJ, Secore S et al. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun 2006; 74(4):2215–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Ayliffe GA. The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 1997; 24 Suppl 1:S74–9.Google Scholar
  25. 25.
    Weinstein JW, Roe M, Towns M et al. Resistant enterococci: a prospective study of prevalence, incidence and factors associated with colonization in a university hospital. Infect Control Hosp Epidemiol 1996; 17(1):36–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Zagursky RJ, Olmsted SB, Russell DP et al. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Expert Rev Vaccines 2003; 2(3):417–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Adu-Bobie J, Capecchi B, Serruto D et al. Two years into reverse vaccinology. Vaccine 2003; 21(7–8): 605–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Lei B, Liu M, Chesney GL et al. Identification of new candidate vaccine antigens made by Streptococcus pyogenes: purification and characterization of 16 putative extracellular lipoproteins. J Infect Dis 2004; 189(1):79–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Fleischmann RD, Alland D, Eisen JA et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002; 184(19):5479–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Cockle PJ, Gordon SV, Lalvani A et al. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect Immun 2002; 70(12):6996–7003.PubMedCrossRefGoogle Scholar
  31. 31.
    Mayers C, Duffield M, Rowe S et al. Analysis of known bacterial protein vaccine antigens reveals biased physical properties and amino acid composition. In: Comparative and Functional Genomics: New York: John Wiley and Sons, Ltd: 2003: 468–478.Google Scholar
  32. 32.
    De Groot AS, Sbai H, Aubin CS et al. Immuno-informatics: Mining genomes for vaccine components. Immunol Cell Biol 2002; 80(3):255–69.PubMedCrossRefGoogle Scholar
  33. 33.
    Flower DR. Towards in silico prediction of immunogenic epitopes. Trends Immunol 2003; 24(12):667–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Tettelin H, Masignani V, Cieslewicz MJ et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci USA 2002; 99(19):12391–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Maione D, Margarit I, Rinaudo CD et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 2005; 309(5731):148–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Conway T, Schoolnik GK. Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol 2003; 47(4):879–89.PubMedCrossRefGoogle Scholar
  37. 37.
    Merrell DS, Butler SM, Qadri F et al. Host-induced epidemic spread of the cholera bacterium. Nature 2002; 417(6889):642–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Voyich JM, Sturdevant DE, Braughton KR et al. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 2003; 100(4):1996–2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Fisher MA, Plikaytis BB, Shinnick TM. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 2002; 184(14):4025–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Grifantini R, Bartolini E, Muzzi A et al. Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: from basic research to vaccine development. Ann NY Acad Sci 2002; 975:202–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Werner T. Proteomics and regulomics: the yin and yang of functional genomics. Mass Spectrom Rev 2004; 23(1):25–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Haas G, Karaali G, Ebermayer K et al. Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2002; 2(3):313–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Cole JN, Ramirez RD, Currie BJ et al. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun 2005; 73(5):3137–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Rodriguez-Ortega MJ, Norais N, Bensi G et al. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 2006; 24(2):191–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Vytvytska O, Nagy E, Bluggel M et al. Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2002; 2(5):580–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Ariel N, Zvi A, Makarova KS et al. Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003; 71(8):4563–79.PubMedCrossRefGoogle Scholar
  47. 47.
    Hughes MJ, Moore JC, Lane JD et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002; 70(3):1254–9.PubMedCrossRefGoogle Scholar
  48. 48.
    The Word: Pathosphere. New Scientist 2005;2520:58.Google Scholar
  49. 49.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517):495–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Klee GG. Human anti-mouse antibodies. Arch Pathol Lab Med 2000; 124(6):921–3.PubMedGoogle Scholar
  51. 51.
    Ober RJ, Radu CG, Ghetie V et al. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 2001; 13(12):1551–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Morrison SL, Johnson MJ, Herzenberg LA et al. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 1984; 81(21):6851–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Bell SJ, Kamm MA. Review article: the clinical role of anti-TNFalpha antibody treatment in Crohn’s disease. Aliment Pharmacol Ther 2000; 14(5):501–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Jones PT, Dear PH, Foote J et al. Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321(6069):522–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: from anti-Tac to Zenapax. Methods 2005; 36(1):69–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Hwang WY, Almagro JC, Buss TN et al. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005; 36(1):35–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Hoogenboom HR, de Bruine AP, Hufton SE et al. Antibody phage display technology and its applications. Immunotechnology 1998; 4(1):1–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Hoogenboom HR. Overview of antibody phage-display technology and its applications. Methods Mol Biol 2002; 178:1–37.PubMedGoogle Scholar
  59. 59.
    Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23(9):1105–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Lonberg N. Human antibodies from transgenic animals. Nat Biotechnol 2005; 23(9):1117–25.PubMedCrossRefGoogle Scholar
  61. 61.
    McCafferty J, Griffiths AD, Winter G et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348(6301):552–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith J, Kontermann RE et al. Antibody phage display technologies with special reference to angiogenesis. FASEB J 2005; 19(3):331–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Duenas M, Borrebaeck CA. Clonal selection and amplification of phage displayed antibodies by linking antigen recognition and phage replication. Biotechnology (NY) 1994; 12(10):999–1002.CrossRefGoogle Scholar
  64. 64.
    Griffiths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 1998;9(1):102–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Spada S, Krebber C, Pluckthun A. Selectively infective phages (SIP). Biol Chem 1997; 378(6):445–56.PubMedCrossRefGoogle Scholar
  66. 66.
    Winter G, Griffiths AD, Hawkins RE et al. Making antibodies by phage display technology. Annu Rev Immunol 1994; 12:433–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Marks JD, Hoogenboom HR, Griffiths AD et al. Molecular evolution of proteins on filamentous phage. Mimicking the strategy of the immune system. J Biol Chem 1992; 267(23):16007–10.PubMedGoogle Scholar
  68. 68.
    Pini A, Viti F, Santucci A et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998; 273(34):21769–76.PubMedCrossRefGoogle Scholar
  69. 69.
    Chowdhury PS, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol 1999; 17(6):568–72.PubMedCrossRefGoogle Scholar
  70. 70.
    Alt FW, Blackwell TK, Yancopoulos GD. Immunoglobulin genes in transgenic mice. Trends in Genetics 1985; 1:231–236.CrossRefGoogle Scholar
  71. 71.
    Green LL, Hardy MC, Maynard-Currie CE et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 1994; 7(1):13–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Lonberg N, Taylor LD, Harding FA et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994; 368(6474):856–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Tomizuka K, Shinohara T, Yoshida H et al. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci USA 2000; 97(2):722–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Ishida I, Tomizuka K, Yoshida H et al. Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 2002; 4(1):91–102.PubMedCrossRefGoogle Scholar
  75. 75.
    Ishida I, Tomizuka K, Yoshida H et al. TransChromo Mouse. Biotechnol Genet Eng Rev 2002; 19:73–82.PubMedGoogle Scholar
  76. 76.
    Harding FA, Lonberg N. Class switching in human immunoglobulin transgenic mice. Ann NY Acad Sci 1995; 764:536–46.PubMedGoogle Scholar
  77. 77.
    Yang XD, Corvalan JR, Wang P et al. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol 1999; 66(3):401–10.PubMedGoogle Scholar
  78. 78.
    Foon KA, Yang XD, Weiner LM et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 2004; 58(3):984–90.PubMedGoogle Scholar
  79. 79.
    Bekker PJ, Holloway DL, Rasmussen AS et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 2004; 19(7):1059–66.PubMedCrossRefGoogle Scholar
  80. 80.
    Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100(14):8372–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Pendley C, Schantz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther 2003; 5(2):172–9.PubMedGoogle Scholar
  82. 82.
    Lipovsek D, Pluckthun A. In vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290(1–2):51–67.PubMedCrossRefGoogle Scholar
  83. 83.
    Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 1994; 91(19):9022–6.PubMedCrossRefGoogle Scholar
  84. 84.
    He M, Taussig MJ. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 1997; 25(24):5132–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 1997; 94(10):4937–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Hanes J, Schaffitzel C, Knappik A et al. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000; 18(12):1287–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15(6):553–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Harvey BR, Georgiou G, Hayhurst A et al. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci USA 2004; 101(25):9193–8PubMedCrossRefGoogle Scholar
  89. 89.
    Urban JH, Schneider RM, Compte M et al. Alvarez-Vallina L, et al. Selection of functional human antibodies from retroviral display libraries. Nucleic Acids Res 2005; 33(4):e35.PubMedCrossRefGoogle Scholar
  90. 90.
    Reiersen H, Lobersli I, Loset GA et al. Covalent antibody display—an in vitro antibody-DNA library selection system. Nucleic Acids Res 2005; 33(1):e10.PubMedCrossRefGoogle Scholar
  91. 91.
    Sepp A, Tawfik DS, Griffiths AD. Microbead display by in vitro compartmentalisation: selection for binding using flow cytometry. FEBS Lett 2002; 532(3):455–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Mossner E, Koch H, Pluckthun A. Fast selection of antibodies without antigen purification: adaptation of the protein fragment complementation assay to select antigen-antibody pairs. J Mol Biol 2001; 308(2):115–22.PubMedCrossRefGoogle Scholar
  93. 93.
    Urech DM, Lichtlen P, Barberis A. Cell growth selection system to detect extracellular and transmembrane protein interactions. Biochim Biophys Acta 2003; 1622(2):117–27.PubMedGoogle Scholar
  94. 94.
    Haurum J, Bregenholt S. Recombinant polyclonal antibodies: therapeutic antibody technologies come full circle. IDrugs 2005; 8(5):404–9.PubMedGoogle Scholar
  95. 95.
    Bird RE, Walker BW. Single chain antibody variable regions. Trends Biotechnol 1991; 9(4):132–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Kortt AA, Malby RL, Caldwell JB et al. Recombinant anti-sialidase single-chain variable fragment antibody. Characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/sialidase complex. Eur J Biochem 1994; 221(1):151–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 1993; 90(14):6444–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Kortt AA, Lah M, Oddie GW et al. Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five and ten-residue linkers form dimers and with zero-residue linker a trimer. Protein Eng 1997; 10(4):423–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Le Gall F, Kipriyanov SM, Moldenhauer G et al. Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19: effect of valency on cell binding. FEBS Lett 1999; 453(1–2):164–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Di Paolo C, Willuda J, Kubetzko S et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective anti-tumor activity. Clin Cancer Res 2003; 9(7):2837–48.PubMedGoogle Scholar
  101. 101.
    Korn T, Muller R, Kontermann RE. Bispecific single-chain diabody-mediated killing of endoglin-positive endothelial cells by cytotoxic T lymphocytes. J Immunother 2004; 27(2):99–106.PubMedCrossRefGoogle Scholar
  102. 102.
    Hu S, Shively L, Raubitschek A et al. Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 1996; 56(13):3055–61.PubMedGoogle Scholar
  103. 103.
    Barnett BB, Smee DF, Malek SM et al. Selective cytotoxicity of ricin A chain immunotoxins towards murine cytomegalovirus-infected cells. Antimicrob Agents Chemother 1996; 40(2):470–2.PubMedGoogle Scholar
  104. 104.
    Till MA, Zolla-Pazner S, Gorny MK et al. Human immunodeficiency virus-infected T cells and monocytes are killed by monoclonal human anti-gp41 antibodies coupled to ricin A chain. Proc Natl Acad Sci USA 1989; 86(6):1987–91.PubMedCrossRefGoogle Scholar
  105. 105.
    McHugh L, Hu S, Lee BK et al. Increased affinity and stability of an anti-HIV-1 envelope immunotoxin by structure-based mutagenesis. J Biol Chem 2002; 277(37):34383–90.PubMedCrossRefGoogle Scholar
  106. 106.
    Dadachova E, Bryan RA, Frenkel A et al. Evaluation of acute hematologic and long-term pulmonary toxicities of radioimmunotherapy of Cryptococcus neoformans infection in murine models. Antimicrob Agents Chemother 2004; 48(3):1004–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Dadachova E, Burns T, Bryan RA et al. Feasibility of radioimmunotherapy of experimental pneumococcal infection. Antimicrob Agents Chemother 2004; 48(5):1624–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Taylor RP, Martin EN, Reinagel ML et al. Bispecific monoclonal antibody complexes facilitate erythrocyte binding and liver clearance of a prototype particulate pathogen in a monkey model. J Immunol 1997; 159(8):4035–44.PubMedGoogle Scholar
  109. 109.
    Lindorfer MA, Nardin A, Foley PL et al. Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies. J Immunol 2001; 167(4):2240–9.PubMedGoogle Scholar
  110. 110.
    Behring EA, Kisato S. Uber das zustandekommen der diphterie-immunität und der tetanus-immunität bei thieren. Deutch. Med. Woch. 1890; 49:1113–1114.Google Scholar
  111. 111.
    Klemperer G, Klemperer, F. Versuche ueber immunisirung und heilung bei der pneumokokkeninfection. Berlin Klin. Wochnschr. 1891; 28:833–835.Google Scholar
  112. 112.
    Casadevall A, Scharff MD. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother 1994; 38(8):1695–702.PubMedGoogle Scholar
  113. 113.
    Flexner S, Jobling, J. W. Serum treatment of epidemic cerebro-spinal meningitis. The Journal of Experimental Medicine 1980; 10:141–195.CrossRefGoogle Scholar
  114. 114.
    Casadevall A. Antibody-based therapies for emerging infectious diseases. Emerg Infect Dis 1996; 2(3):200–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Nadler LM, Stashenko P, Hardy R et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res 1980; 40(9):3147–54.PubMedGoogle Scholar
  116. 116.
    Wilde MI, Goa KL. Muromonab CD3: a reappraisal of its pharmacology and use as prophylaxis of solid organ transplant rejection. Drugs 1996; 51(5):865–94.PubMedCrossRefGoogle Scholar
  117. 117.
    Stiegler G, Katinger H. Therapeutic potential of neutralizing antibodies in the treatment of HIV-1 infection. J Antimicrob Chemother 2003; 51(4):757–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Montefiori DC. Neutralizing antibodies take a swipe at HIV in vivo. Nat Med 2005; 11(6):593–4.PubMedCrossRefGoogle Scholar
  119. 119.
    Markovic I, Clouse KA. Recent advances in understanding the molecular mechanisms of HIV-1 entry and fusion: revisiting current targets and considering new options for therapeutic intervention. Curr HIV Res 2004; 2(3):223–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Warren HS, Danner RL, Munford RS. Anti-endotoxin monoclonal antibodies. N Engl J Med 1992; 326(17):1153–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Abraham E. Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med 1999; 25(6):556–66.PubMedCrossRefGoogle Scholar
  122. 122.
    Reinhart K, Karzai W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 2001; 29(7 Suppl):S121–5.CrossRefGoogle Scholar
  123. 123.
    Manocha S, Feinstein D, Kumar A. Novel therapies for sepsis: antiendotoxin therapies. Expert Opin Investig Drugs 2002; 11(12):1795–812.PubMedCrossRefGoogle Scholar
  124. 124.
    Burnie JP, Brooks W, Donohoe M et al. Defining antibody targets in Streptococcus oralis infection. Infect Immun 1996; 64(5):1600–8.PubMedGoogle Scholar
  125. 125.
    Burnie JP, Matthews RC, Carter T et al. Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections. Infect Immun 2000; 68(6):3200–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Lindahl G, Stalhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18(1):102–27.PubMedCrossRefGoogle Scholar
  127. 127.
    Burnie JP, Carter TL, Hodgetts SJ et al. Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 2006; 30(1):53–88.PubMedCrossRefGoogle Scholar
  128. 128.
    Matthews RC, Burnie JP. Recombinant antibodies: a natural partner in combinatorial anti-fungal therapy. Vaccine 2004; 22(7):865–71.PubMedCrossRefGoogle Scholar
  129. 129.
    Wei Wu, Lu Q, Chaudry GJ, Leppla SH, Cohen SN. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 2006; 124(6):1141–54.PubMedCrossRefGoogle Scholar
  130. 130.
    Walsh C. Antibiotics: Actions, Origins, Resistance: ASM Press; 2003.Google Scholar
  131. 131.
    Clarke T. Drug companies snub antibiotics as pipeline threatens to run dry. Nature 2003; 425(6955):225.PubMedGoogle Scholar
  132. 132.
    Biocentury. The Bernstein report. 2006: p. A2 of 23.Google Scholar
  133. 133.
    Pucci MJ. Use of genomics to select anti-bacterial targets. Biochem Pharmacol 2006 71(7):1066–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Marra A. Can virulence factors be viable anti-bacterial targets? Expert Rev Anti Infect Ther 2004; 2(1):61–72.PubMedCrossRefGoogle Scholar
  135. 135.
    Becker D, Selbach M, Rollenhagen C et al. Robust Salmonella metabolism limits possibilities for new anti-microbials. Nature 2006; 440(7082):303–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Schmidt FR. The challenge of multidrug resistance: actual strategies in the development of novel antibacterials. Appl Microbiol Biotechnol 2004; 63(4):335–43.PubMedCrossRefGoogle Scholar
  137. 137.
    Hughes D. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nat Rev Genet 2003; 4(6):432–41.PubMedCrossRefGoogle Scholar
  138. 138.
    Holzheimer RG. Antibiotic induced endotoxin release and clinical sepsis: a review. J Chemother 2001; 13 Spec No 1(1):159–72.Google Scholar
  139. 139.
    Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 2005; 54(1):11–29.PubMedCrossRefGoogle Scholar
  140. 140.
    Mazmanian SK, Skaar EP, Gaspar AH et al. Passage of heme-iron across the envelope of Staphyloccus aureus. Science 2003; 299(5608):906–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Fleuridor R, Zhong Z, Pirofski L. A human IgM monoclonal antibody prolongs survival of mice with lethal cryptococcosis. J Infect Dis 1998; 178(4):1213–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Pier GB, Boyer D, Preston M et al. Human monoclonal antibodies to Pseudomonas aeruginosa alginate that protect against infection by both mucoid and nonmucoid strains. J Immunol 2004; 173(9): 5671–8.PubMedGoogle Scholar
  143. 143.
    Barnea Y, Carmeli Y, Gur E et al. Efficacy of antibodies against the N-terminal of Pseudomonas aeruginosa flagellin for treating infections in a murine burn wound model. Plast Reconstr Surg 2006; 117(7):2284–91.PubMedCrossRefGoogle Scholar
  144. 144.
    Neville LF, Barnea Y, Hammer-Munz O et al. Antibodies raised against N’-terminal Pseudomonas aeruginosa flagellin prevent mortality in lethal murine models of infection. Int J Mol Med 2005; 16(1):165–71.PubMedGoogle Scholar
  145. 145.
    Kling DE, Gravekamp C, Madoff LC et al. Characterization of two distinct opsonic and protective epitopes within the alpha C protein of the group B Streptococcus. Infect Immun 1997; 65(4):1462–7.PubMedGoogle Scholar
  146. 146.
    Bevanger L, Naess AI. Mouse-protective antibodies against the Ibc proteins of group B streptococci. Acta Pathol Microbiol Immunol Scand [B] 1985; 93(2):121–4.Google Scholar
  147. 147.
    Michel JL, Madoff LC, Kling DE et al. Cloned alpha and beta C-protein antigens of group B streptococci elicit protective immunity. Infect Immun 1991; 59(6):2023–8.PubMedGoogle Scholar
  148. 148.
    Martin D, Rioux S, Gagnon E et al. Protection from group B streptococcal infection in neonatal mice by maternal immunization with recombinant Sip protein. Infect Immun 2002; 70(9):4897–901.PubMedCrossRefGoogle Scholar
  149. 149.
    Park HS, Cleary PP. Active and passive intranasal immunizations with streptococcal surface protein C5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils. Infect Immun 2005; 73(12):7878–86.PubMedCrossRefGoogle Scholar
  150. 150.
    Connolly SE, Benach JL. Cutting edge: the spirochetemia of murine relapsing fever is cleared by complement-independent bactericidal antibodies. J Immunol 2001; 167(6):3029–32.PubMedGoogle Scholar
  151. 151.
    Beedham RJ, Turnbull PC, Williamson ED. Passive transfer of protection against Bacillus anthracis infection in a murine model. Vaccine 2001; 19(31):4409–16.PubMedCrossRefGoogle Scholar
  152. 152.
    Little SF, Ivins BE, Fellows PF et al. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect Immun 1997; 65(12):5171–5.PubMedGoogle Scholar
  153. 153.
    Blanpain C, Libert F, Vassart G et al. CCR5 and HIV infection. Receptors Channels 2002; 8(1):19–31.PubMedCrossRefGoogle Scholar
  154. 154.
    Vernachio JH, Bayer AS, Ames B et al. Human immunoglobulin G recognizing fibrinogen-binding surface proteins is protective against both Staphylococcus aureus and Staphylococcus epidermidis infections in vivo. Antimicrob Agents Chemother 2006; 50(2):511–8.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Carmen Giefing
    • 1
  • Eszter Nagy
    • 1
  • Alexander von Gabain
    • 1
    Email author
  1. 1.Intercell AGViennaAustria

Personalised recommendations