Single and Multiple Robotic Capsules for Endoluminal Diagnosis and Surgery

  • Arianna MenciassiEmail author
  • Pietro Valdastri
  • Kanako Harada
  • Paolo Dario


The present chapter illustrates robotic approaches to endolomuninal diagnosis and therapy of hollow organs of the human body, with a specific reference to the gastrointestinal (GI) tract. It gives an overview of the main technological and medical problems to be approached when dealing with miniaturized robots having a pill-like size, which are intended to explore the GI tract teleoperated by clinicians with high precision, flexibility, effectiveness and reliability. Considerations on different specifications for diagnostic and surgical swallowable devices are presented, by highlighting problems of power supply, dynamics, kinematics and working space. Two possible solutions are presented with details about design issues, fabrication and testing: the first solution consists of the development of active capsules, 2–3 cm3 in volume, for teleoperated diagnosis in the GI tract; the second solution illustrates a multiple capsule approach allowing to overcome power supply and working space problems, that are typical in single capsule solutions.


Active locomotion Biomechatronics Biorobotics robotic surgery Capsule endoscopy Endoluminal surgery Gastrointestinal endoscopy Robotic endoscopy Legged locomotion Meso-scale robotics Minimally invasive gastroscopy Modular robotics Reconfigurable robotics 



This work was supported in part by the European Commission, in the framework of the ARES (Assembling Reconfigurable Endoluminal Surgical system) and VECTOR (Versatile Endoscopic Capsule for gastrointestinal TumOr Recognition and therapy) European Projects, and in part by the Intelligent Microsystem Center (IMC-KIST, Seoul, South Korea) in the framework of the OPTIMUS project. The authors would like to thank Professor Alfred Cuschieri for his medical consultancy. The authors are grateful to Dr. E. Susilo and Ms. S. Condino for their invaluable technical support and Mr. N. Funaro for the manufacturing of the prototypes. The authors thank Dr. D. Oetomo, University of Melbourne, Australia and Mr. Z. Nagy, ETH Zurich, Switzerland for technical discussion.


  1. 1.
    Cuschieri, A., Melzer, A.: The impact of technologies on minimally invasive therapy. Surg. Endosc. 11, 91–92 (1997)CrossRefGoogle Scholar
  2. 2.
    Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M.C., Dario, P.: Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng. 49, 613–616 (2002)CrossRefGoogle Scholar
  3. 3.
    Hu, C., Meng, M.Q.H., Mandal, M.: Efficient magnetic localization and orientation technique for capsular endoscopy. Int. J. Inf. Acquisition 2, 23–26, (2005)CrossRefGoogle Scholar
  4. 4.
    Lehman, A.C., Rentschler, M.E., Farritor, S.M., Oleynikov, D.: The current state of miniature in vivo laparoscopic robotics. J. Robot. Surg. 1, 45–49 (2007)CrossRefGoogle Scholar
  5. 5.
    Yonezawa, J., Kaise, M., Sumiyama, K., Goda, K., Arakawa, H., Tajiri, H.: A novel double-channel therapeutic endoscope (“R-scope”) facilitates endoscopic submucosal dissection of superficial gastric neoplasms. Endoscopy 38, 1011–1015 (2006)CrossRefGoogle Scholar
  6. 6.
    Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23(4–5), 549–556 (2004)CrossRefGoogle Scholar
  7. 7.
    Menciassi, A., Stefanini, C., Gorini, S., Pernorio, G., Dario, P., Kim, B., Park, J.O.: Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity. IEEE Int. Conf. Intell. Robots.Syst. 1, 937–942 (2004)Google Scholar
  8. 8.
    Stefanini, C., Menciassi, A., Dario, P.: Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment. Int. J. Robot. Res. 25(5–6), 551–560 (2006)CrossRefGoogle Scholar
  9. 9.
    Dutta, S.M., Ghorbel, F.H.: Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Trans. Mechatron. 10(2), 189–197 (2005)CrossRefGoogle Scholar
  10. 10.
    Gorini, S., Quirini, M., Menciassi, A., Pernorio, G., Stefanini, C., Dario, P.: A novel sma-based actuator for a legged endoscopic capsule. In: Proceedings of IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics – BioRob (2006)Google Scholar
  11. 11.
    Quirini, M., Menciassi, A., Scapellato, S., Stefanini, C., Dario, P.: Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE/ASME Trans. Mechatron. 13(2), 169–179 (2008)CrossRefGoogle Scholar
  12. 12.
    Quirini, M., Scapellato, S., Menciassi, A., Dario, P., Rieber, F., Ho, C.N., Schostek, S., Schurr, M.O.: Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest. Endosc. 67(7), 1153–1158 (2008)CrossRefGoogle Scholar
  13. 13.
    Valdastri, P., Webster, R.J. III, Quaglia, C., Quirini, M., Menciassi, A., Dario, P.: A new mechanism for meso-scale legged locomotion in compliant tubular environments. IEEE Trans. Robot. 25(5), 1047–1057 (2009)CrossRefGoogle Scholar
  14. 14.
    Quaglia, C., Buselli, E., Webster, R.J. III, Valdastri, P., Menciassi, A., Dario, P.: An endoscopic capsule robot: a meso-scale engineering case study. J. Micromech. Microeng. 19(10), 105007 (2009)CrossRefGoogle Scholar
  15. 15.
    Tortora, G., Valdastri, P., Susilo, E., Menciassi, A., Dario, P., Rieber, F., Schurr, M.O.: Propeller-based wireless device for active capsular endoscopy in the gastric district. MITAT 18(5), 280–290 (2009)CrossRefGoogle Scholar
  16. 16.
    Arezzo, A.: Prospective randomized trial comparing bowel cleaning preparations for colonoscopy. Surg. Laparosc. Endosc. Percutan. Tech. 10, 215–217 (2000)MathSciNetGoogle Scholar
  17. 17.
    Schanz, S.: Bowel preparation for colonoscopy with sodium phosphate solution versus polyethylene glycol-based lavage: a multicenter trial. Diagn. Ther. Endosc. 713521 (2008)Google Scholar
  18. 18.
    Rieber, F., Tognoni, V., Cenci, L., di Lorenzo, N., Schurr, M.O.: Capsule endoscopy of the entire GI tract. In: SMIT annual meeting (2008)Google Scholar
  19. 19.
    Hebert, J.J., Taylor, A.J., Winter, T.C., Reichelderfer, M., Weichert, J.P.: Low attenuation oral GI contrast agents in abdominal-pelvic computed tomography. Abdom. Imaging 31, 48–53 (2006)CrossRefGoogle Scholar
  20. 20.
    Quirini, M., Menciassi, A., Scapellato, S., Dario, P., Rieber, F., Ho, C., Schostek, S., Schurr, M.O.: Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest. Endosc. 67, 1153–1158 (2008)CrossRefGoogle Scholar
  21. 21.
    Dario, P., Menciassi, A., Valdastri, P., Tortora, G.: Dispositivo endoscopico wireless a propulsione autonoma per esplorazione gastrica. Italian Patent BI865F/FMB/fpd (2008)Google Scholar
  22. 22.
    Valdastri, P., Menciassi, A., Dario, P.: Transmission power requirements for novel zigbee implants in the gastrointestinal tract. IEEE Trans. Biomed. Eng. 55, 1705–1710 (2008)CrossRefGoogle Scholar
  23. 23.
    Carta, R., Lenaerts, B., Thoné, J., Tortora, G., Valdastri, P., Menciassi, A., Puers, R., Dario, P.: Wireless power supply as enabling technology towards active locomotion in capsular endoscopy. Biosens. Bioelectron. 25(4), 845–851 (2009)CrossRefGoogle Scholar
  24. 24.
    Valdastri, P., Quaglia, C., Susilo, E., Menciassi, A., Dario, P., Ho, C.N., Anhoeck, G., Schurr, M.O.: Wireless therapeutic endoscopic capsule: in-vivo experiment. Endoscopy. 40, 979–982 (2008)CrossRefGoogle Scholar
  25. 25.
    Kirschniak, A., Kratt, T., Stuker, D., Braun, A., Schurr, M.O., Konigsrainer, A.: A new endoscopic over-the-scope clip system for treatment of lesions and bleeding in the GI tract: first clinical experiences. Gastrointest. Endosc. 66, 162–167 (2007)CrossRefGoogle Scholar
  26. 26.
    Schurr, M.O., Hartmann, C., Ho, C.N., Fleisch, C., Kirschniak, A.: An over-the-scope clip (OTSC) system for closure of iatrogenic colon perforations: results of an experimental survival study in pigs. Endoscopy 40, 584–588 (2008)CrossRefGoogle Scholar
  27. 27.
    Raju, G.S., Gajula, L.: Endoclips for GI endoscopy. Gastrointest. Endosc. 59, 267–79 (2004)CrossRefGoogle Scholar
  28. 28.
    Given Imaging Ltd. website.
  29. 29.
    Cavallotti, C., Piccigallo, M., Susilo, E., Valdastri, P., Menciassi, A., Dario, P.: An integrated vision system with autofocus for wireless capsular endoscopy, Sens. Actuators. A Phys. 156(1), 72–78 (2009)CrossRefGoogle Scholar
  30. 30.
    Cheng, Y., Lai, J.: Fabrication of meso-scale underwater vehicle components by rapid prototyping process. J. Mater. Process. Technol. 201, 640–644 (2008)CrossRefGoogle Scholar
  31. 31.
    Valdastri, P., Quaglia, C., Menciassi, A., Dario, P., Ho, C.N., Anhoeck, G., Schoesteck, Rieber F., Schurr, M.O.: Surgical clip releasing wireless capsule, European patent application 08425604.9, filed on 16/09/2008Google Scholar
  32. 32.
    Ramcharitar, S., Patterson, M.S., van Geuns, R.J., van Meighem, C., Serruys, P.W.: Technology insight: magnetic navigation in coronary interventions. Nat. Clin. Pract. Cardiovasc. Med. 5, 148–156 (2008)CrossRefGoogle Scholar
  33. 33.
    Swain, P.: The future of wireless capsule endoscopy. World J. Gastroenterol. 14, 4142–4145 (2008)CrossRefGoogle Scholar
  34. 34.
    Bardaro, S.J., Swanström, L.: Development of advanced endoscopes for natural orifice transluminal endoscopic surgery (NOTES). Minim. Invasive Ther. Allied Technol. 15(6), 378–383 (2006)CrossRefGoogle Scholar
  35. 35.
    The ares (assembling reconfigurable endoluminal surgical system), Project Website (2006)
  36. 36.
    Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell Structures – CKBOT. In: IEEE International Workshop on Intelligent Robots, pp. 145–150 (1988)Google Scholar
  37. 37.
    Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H.: Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [Grand Challenges of Robotics]. IEEE Robot. Autom. Mag. 14(1), 865–872 (2007)Google Scholar
  38. 38.
    Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14, 71–78 (2007)CrossRefGoogle Scholar
  39. 39.
    World Health Organisation, Fact sheet n.297, Online: (2006)
  40. 40.
    Pesic, M., Karanikolic, A., Djordjevic, N., Katic, V., Rancic, Z., Radojkovic, M.: Ignjatovic, N., Pesic, I.: The importance of primary gastric cancer location in 5-year survival rate. Arch.Oncol. 12, 51–53 (2004)CrossRefGoogle Scholar
  41. 41.
    Harada, K., Susilo, E., Ng Pak, N., Menciassi, A., Dario, P.: Design of a bending module for assembling reconfigurable endoluminal surgical system. In: Proceedings of the 6th International Conference of International Society of Gerontechnology (ISG’08), Pisa, Italy, pp. ID–186, 4–7 June 2008Google Scholar
  42. 42.
    Nagy, Z., Oung, R., Abbott, J.J., Nelson, B.J.: Experimental investigation of magnetic selfassembly for swallowable modular robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1915–1920, 22–26 Sept 2008Google Scholar
  43. 43.
    Susilo, E., Valdastri, P., Menciassi, A., Dario, P.: A miniaturized wireless control platform for robotic capsular endoscopy using advanced pseudokernel approach. Sens. Actuators A Phys. 156(1), 49–58 (2009)CrossRefGoogle Scholar
  44. 44.
    Nagy, Z., Abbott, J., Nelson, B.: The magnetic self-aligning hermaphroditic connector: a scalable approach for modular microrobotics. In: Proceeding of IEEE/ASME International Conference Advanced Intelligent Machatronics, pp. 1–6, Zurich, (2007)Google Scholar
  45. 45.
    Oetomo, D., Daney, D., Harada, K., Merlet, J.P., Menciassi, A., Dario, P.: Topology design of surgical reconfigurable robots by interval analysis. In: IEEE International Conference on Robotics and Automation (ICRA2009), pp. 3085–3090 (2009)Google Scholar
  46. 46.
    ARAKNES Project Website (2008)
  47. 47.
    Lehman, A.C., Dumpert, J., Wood, N.A., Redden, L., Visty, A.Q., Farritor, S., Varnell, B., Oleynikov, D.: Natural orifice cholecystectomy using a miniature robot, Surg. Endosc. 23(2), 260–266 (2009)CrossRefGoogle Scholar
  48. 48.
    Harada, K., Susilo, E., Menciassi, A., Dario, P.: Wireless reconfigurable modules for robotic endoluminal surgery. In: IEEE International Conference on Robotics and Automation. ICRA ’09, pp. 2699–2704 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Arianna Menciassi
    • 1
    Email author
  • Pietro Valdastri
  • Kanako Harada
  • Paolo Dario
  1. 1.Scuola Superiore Sant’AnnaPisaItaly

Personalised recommendations