Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits

  • N. Kopell
  • C. Börgers
  • D. Pervouchine
  • P. Malerba
  • A. Tort
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 5)


The neural circuits of the hippocampus are extremely complex, with many classes of interneurons whose contributions to network dynamics and function are still unknown. Nevertheless, reduced models can provide insight into aspects of the dynamics and associated function. In this chapter, we discuss models at a variety of levels of complexity, all simple enough to probe the reasons for the behavior of the model. The chapter focuses on the main rhythms displayed by the hippocampus, the gamma (30–90 Hz) and theta (4–12 Hz) rhythms. We concentrate on modeling in vitro experiments, but with an eye toward possible in vivo implications.


Pyramidal Cell Stellate Cell Theta Rhythm Biophysical Model Basket Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Acker, C. D., Kopell, N., and White, J. A. 2003. Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. J Comput Neurosci, 15, 71–90.CrossRefPubMedGoogle Scholar
  2. Amaral, D. G., and Witter, M. P. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31(3), 571–591.CrossRefPubMedGoogle Scholar
  3. Andersen, P., Bliss, T. V., Lomo, T., Olsen, L. I., and Skrede, K. K. 1969. Lamellar organization of hippocampal excitatory pathways. Acta Physiol Scand, 76(1), 4A–5A.PubMedGoogle Scholar
  4. Andersen, P., Soleng, A. F., and Raastad, M. 2000. The hippocampal lamella hypothesis revisited. Brain Res, 886(1–2), 165–171.CrossRefPubMedGoogle Scholar
  5. Bartos, M., Vida, I., Frotscher, M., Geiger, J. R., and Jonas, P. 2001. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci, 21(8), 2687–98.PubMedGoogle Scholar
  6. Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. P. R., and Jonas, P. 2002. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci USA, 99(20), 13222–13227.CrossRefPubMedGoogle Scholar
  7. Bathellier, B., Carleton, A., and Gerstner, W. 2008. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Neural Comp, 20(12), 2973–3002.CrossRefGoogle Scholar
  8. Börgers, C., and Kopell, N. 2003. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comp, 15(3), 509–539.CrossRefGoogle Scholar
  9. Börgers, C., and Kopell, N. 2005. Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comp, 17(3), 557–608.CrossRefGoogle Scholar
  10. Börgers, C., and Kopell, N. 2008. Gamma oscillations and stimulus selection. Neural Comp, 20, 383–414.CrossRefGoogle Scholar
  11. Börgers, C., Epstein, S., and Kopell, N. 2005. Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci USA, 102(19), 7002–7007.CrossRefPubMedGoogle Scholar
  12. Börgers, C., Epstein, S., and Kopell, N. 2008. Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proc Natl Acad Sci USA, 105(46),18023–8.CrossRefPubMedGoogle Scholar
  13. Buhl, E. H., Cobb, S. R., Halasy, K., and Somogyi, P. 1995. Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur J Neurosci, 7(9), 1989–2004.CrossRefPubMedGoogle Scholar
  14. Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., and Knight, R. T. 2006. High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313, 1626–1628.CrossRefPubMedGoogle Scholar
  15. Chapman, C. A., and Lacaille, J. C. 1999. Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. J Neurosci, 19, 8637–8645.PubMedGoogle Scholar
  16. Crook, S. M., Ermentrout, G. B., and Bower, J. M. 1998. Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators. Neural Comp, 10(4), 837–854.CrossRefGoogle Scholar
  17. Cunningham, M. O., Whittington, M. A., Bibbig, A., Roopun, A., LeBeau, F. E. N., Vogt, A., Monyer, H., Buhl, E. H., and Traub, R. D. 2004. A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Natl Acad Sci USA, 101(18), 7152–7157.CrossRefPubMedGoogle Scholar
  18. Dickson, C. T., Magistretti, J., Shalinsky, M. H., Fransen, E., Hasselmo, M. E., and Alonso, A. 2000. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol, 83(5), 2562–2579.PubMedGoogle Scholar
  19. Diener, F. 1985a. Propriétés asymptotiques des fleuves. C R Acad Sci Paris, 302, 55–58.Google Scholar
  20. Diener, M. 1985b. Détermination et existence des fleuves en dimension 2. C R Acad Sci Paris, 301, 899–902.Google Scholar
  21. Dorval, A. D., Christini, D. J., and White, J. A. 2001. Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Ann Biomed Eng, 29(10), 897–907.CrossRefPubMedGoogle Scholar
  22. Dragoi, G., and Buzsáki, G. 2006. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50, 145–157.CrossRefPubMedGoogle Scholar
  23. Dugladze, T., Vida, I., Tort, A. B., Gross, A., Otahal, J., Heinemann, U., Kopell, N. J., and Gloveli, T. 2007. Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proc Natl Acad Sci USA, 104(44), 17530–17535.CrossRefPubMedGoogle Scholar
  24. Ermentrout, G. B. 1996. Type I membranes, phase resetting curves, and synchrony. Neural Comp, 8, 879–1001.CrossRefGoogle Scholar
  25. Ermentrout, G. B., and Kopell, N. 1998. Fine structure of neural spiking and synchronization in the presence of conduction delay. Proc Natl Acad Sci USA, 95, 1259–1264.CrossRefPubMedGoogle Scholar
  26. Ermentrout, B., Pascal, M., and Gutkin, B. 2001. The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comp, 13, 1285–1310.CrossRefGoogle Scholar
  27. Fisahn, A., Pike, F. G., Buhl, E. H., and Paulsen, O. 1998. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature, 394(6689), 186–189.CrossRefPubMedGoogle Scholar
  28. Galán, R. F., Ermentrout, G. B., and Urban, N. N. 2005. Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys Rev Lett, 94(15), 158101.CrossRefPubMedGoogle Scholar
  29. Gerstner, W., van Hemmen, J. L., and Cowen, J. 1996. What matters in neuronal locking? Neural Comp, 8, 1653–1676.CrossRefGoogle Scholar
  30. Gillies, M. J., Traub, R. D., LeBeau, F. E. N., Davies, C. H., Gloveli, T., Buhl, E. H., and Whittington, M. A. 2002. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol, 543(Pt 3), 779–793.CrossRefPubMedGoogle Scholar
  31. Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R. D., Whittington, M. A., and Buhl, E. H. 2005a. Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol, 562(Pt 1), 131–147.Google Scholar
  32. Gloveli, T., Dugladze, T., Rotstein, H. G., Traub, R. D., Monyer, H., Heinemann, U., Whittington, M. A., and Kopell, N. J. 2005b. Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci USA, 102(37), 13295–13300.CrossRefGoogle Scholar
  33. Goldin, M., Epsztein, J., Jorquera, I., Represa, A., Ben-Ari, Y., Crépel, V., and Cossart, R. 2007. Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency. J Neurosci, 27(36), 9560–9572.CrossRefPubMedGoogle Scholar
  34. Golomb, D., and Hansel, D. 2000. The number of synaptic inputs and the synchrony of large sparse neuronal networks. Neural Comp, 12, 1095–1139.CrossRefGoogle Scholar
  35. Gray, C. M. 1999. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron, 24(1), 31–47.CrossRefPubMedGoogle Scholar
  36. Gutkin, B. S., Ermentrout, G. B., and Reyes, A. D. 2005. Phase-response curves give the responses of neurons to transient inputs. J Neurophysiol, 94, 1623–1635.CrossRefPubMedGoogle Scholar
  37. Haas, J. S., and White, J. A. 2002. Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. J Neurophysiol, 88(5), 2422–2429.CrossRefPubMedGoogle Scholar
  38. Hamzei-Sichani, F., Kamasawa, N., Janssen, W. G. M., Yasumura, T., Davidson, K. G. V., Hof, P. R., Wearne, S. L., Stewart, M. G., Young, S. R., Whittington, M. A., Rash, J. E., and Traub, R. D. 2007. Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze-fracture replica immunogold labeling. Proc Natl Acad Sci USA, 104(30), 12548–12553.CrossRefPubMedGoogle Scholar
  39. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsaki, G. 2003. Organization of cell assemblies in the hippocampus. Nature, 424(6948), 552–556.CrossRefPubMedGoogle Scholar
  40. Hebb, D. O. 1949. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.Google Scholar
  41. Hines, M. L., and Carnevale, N. T. 1997. The NEURON simulation environment. Neural Comp, 9(6), 1179–1209.CrossRefGoogle Scholar
  42. Hu, H., Vervaeke, K., and Storm, J. F. 2002. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol, 545(Pt 3), 783–805.CrossRefPubMedGoogle Scholar
  43. Itskov, V., Pastalkova, E., Mizuseki, K., Buzsaki, G., and Harris, K. D. 2008. Theta-mediated dynamics of spatial information in hippocampus. J Neurosci, 28, 5959–5964.CrossRefPubMedGoogle Scholar
  44. Katona, I., Acsády, L., and Freund, T. F. 1999. Postsynaptic targets of somatostain-immunoreactive interneurons in the rat hippocampus. Neuroscience 88(1), 37–55.CrossRefPubMedGoogle Scholar
  45. Kay, L. M. 2003. Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. J Integr Neurosci, 2(1), 31–44.CrossRefPubMedGoogle Scholar
  46. Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., and Somogyi, P. 2003. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421, 844–848.CrossRefPubMedGoogle Scholar
  47. Kopell, N., and Ermentrout, G. B. 2002. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In Handbook on Dynamical Systems: Toward Applications. Ed. B. Fiedler, Vol. 2, Elsevier, Amsterdam, 3–54.Google Scholar
  48. Kopell, N., and Ermentrout, B. 2004. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc Natl Acad Sci USA, 101(43), 15482–15487.CrossRefPubMedGoogle Scholar
  49. Kopell, N. 2005. Does it have to be this complicated? Focus on ‘Single-column thalamocortical network model exhibiting gamma oscillations, spindles, and epileptogenic bursts’. J Neurophysiol, 93(4), 1829–1830.CrossRefPubMedGoogle Scholar
  50. Lawrence, J. J., Saraga, F., Churchill, J. F., Statland, J. M., Travis, K. E., Skinner, F. K., and McBain, C. J. 2006. Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci, 26(47), 12325–12338.CrossRefPubMedGoogle Scholar
  51. Lewis, T. J., and Rinzel, J. 2000. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network Comput Neural Syst, 11, 299–320.CrossRefGoogle Scholar
  52. Lewis, T. J., and Rinzel, J. 2001. Topological target patterns and population oscillations in a network with random gap junctional coupling. Neurocomputing, 763–768.Google Scholar
  53. Middleton, S., Jalics, J., Kispersky, T., Lebeau, F. E. N., Roopun, A. K., Kopell, N. J., Whittington, M. A., and Cunningham, M. O. 2008. NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex. Proc Natl Acad Sci USA, 105(47), 18572–18577.CrossRefPubMedGoogle Scholar
  54. Munro, E. C. 2008. The axonal plexus: a description of the behavior of a network of axons connected by gap junctions. Ph.D. thesis, Tufts University.Google Scholar
  55. Netoff, T. I., Acker, C. D., Bettencourt, J. C., and White, J. A. 2005a. Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. J Comput Neurosci, 18(3), 287–295.CrossRefGoogle Scholar
  56. Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., and White, J. A. 2005b. Synchronization in hybrid neuronal networks of the hippocampal formation. J Neurophysiol, 93(3), 1197–1208.CrossRefGoogle Scholar
  57. Olufsen, M., Whittington, M., Camperi, M., and Kopell, N. 2003. New functions for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J Comput Neurosci, 14,33–54.CrossRefPubMedGoogle Scholar
  58. Oprisan, S. A., Prinz, A. A., and Canavier, C. C. 2004. Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys J, 87, 2283–2298.CrossRefPubMedGoogle Scholar
  59. Orban, G., Kiss, T., and Erdi, P. 2006. Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. J Neurophysiol, 96(6),2889–2904.CrossRefPubMedGoogle Scholar
  60. Oren, I., Nissen, W., Kullmann, D. M., Somogyi, P., and Lamsa, K. P. 2009. Role of ionotropic glutamate receptors in long-term potentiation in rat hippocampal CA1 oriens-lacunosum moleculare interneurons. J Neurosci, 29(4), 939–950.CrossRefPubMedGoogle Scholar
  61. Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsáki, G. 2008. Internally generated cell assembly sequences in the rat hippocampus. Science, 321, 1322–1327.CrossRefPubMedGoogle Scholar
  62. Pervouchine, D. D., Netoff, T. I., Rotstein, H. G., White, J. A., Cunningham, M. O., Whittington, M. A., and Kopell, N. J. 2006. Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural Comp, 18(11), 2617–2650.CrossRefGoogle Scholar
  63. Reinker, S., Li, Y.-X., and Kuske, R. 2006. Noise-induced coherence and network oscillations in a reduced bursting model. Bull Math Biol, 68(6), 1401–1427.CrossRefPubMedGoogle Scholar
  64. Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., Whittington, M. A., and Kopell, N. 2005. Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. J Neurophysiol, 94(2), 1509–1518.CrossRefPubMedGoogle Scholar
  65. Rotstein, H. G., Oppermann, T., White, J. A., and Kopell, N. 2006. The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J Comput Neurosci, 21(3), 271–292.CrossRefPubMedGoogle Scholar
  66. Saraga, F., Wu, C. P., Zhang, L., and Skinner, F. K. 2003. Active dendrites and spike propagation in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol, 552(3), 502–509.CrossRefGoogle Scholar
  67. Senior, T. J., Huxter, J. R., Allen, K., O’Neill, J., and Csicsvari, J. 2008. Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus. J Neurosci, 28(9), 2274–2286.CrossRefPubMedGoogle Scholar
  68. Serenevy, A. 2007. Dynamic mechanisms in networks of interneurons with periodic drives. Ph.D. thesis, Boston University.Google Scholar
  69. Sharp, A. A., O’Neil, M. B., Abbott, L. F., and Marder, E. 1993. Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol, 69(3), 992–995.PubMedGoogle Scholar
  70. Singer, W., and Gray, C. M. 1995. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci, 18, 555–586.CrossRefPubMedGoogle Scholar
  71. Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., and Kopell, N. J. 2007. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci USA, 104(33), 13490–13495.CrossRefPubMedGoogle Scholar
  72. Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., and Kopell, N. 2008. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci USA, 105(51), 20517–20522.CrossRefPubMedGoogle Scholar
  73. Traub, R. D., and Miles, R. 1991. Neuronal Networks of the Hippocampus. Cambridge, UK: Cambridge University Press.Google Scholar
  74. Traub, R. D., Jefferys, J. G. R., and Whittington, M. 1997. Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J Comput Neurosci, 4, 141–150.CrossRefPubMedGoogle Scholar
  75. Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E. N., Whittington, M. A., and Buhl, E. H. 2000. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci, 12, 4093–4106.CrossRefPubMedGoogle Scholar
  76. Traub, R. D., Kopell, N., Bibbig, A., Buhl, E. H., Lebeau, F. E. N., and Whittington, M. A. 2001. Gap junctions between interneuron dendrites can enhance long-range synchrony of gamma oscillations. J Neurosci, 21, 9478–9486.PubMedGoogle Scholar
  77. Traub, R. D., Bibbig, A., LeBeau, F. E. N., Buhl, E. H., and Whittington, M. A. 2004. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci, 27, 247–278.CrossRefPubMedGoogle Scholar
  78. Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., Bibbig, A., Wilent, W. B., Higley, M. J., and Whittington, M. A. 2005. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol, 93(4), 2194–2232.CrossRefPubMedGoogle Scholar
  79. Tukker, J., Fuentealba, P., Hartwich, K., Somogyi, P., and Klausberger, T. 2007. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci, 27(31), 8184–8189.CrossRefPubMedGoogle Scholar
  80. van Vreeswijk, C., Abbott, L. F., and Ermentrout, G. B. 1994. When inhibition not excitation synchronizes neural firing. J Comput Neurosci, 1, 313–322.CrossRefPubMedGoogle Scholar
  81. Wang, X.-J., and Buzsáki, G. 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci, 16, 6402–6413.PubMedGoogle Scholar
  82. White, J., Chow, C., Ritt, J., Soto-Trevino, C., and Kopell, N. 1998a. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci, 5, 5–16.CrossRefGoogle Scholar
  83. White, J. A., Klink, R., Alonso, A., and Kay, A. R. 1998b. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol, 80, 262–269.Google Scholar
  84. White, J. A., Banks, M. I., Pearce, R. A., and Kopell, N. J. 2000. Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gammatheta rhythm. Proc Natl Acad Sci USA, 97(14), 8128–8133.CrossRefPubMedGoogle Scholar
  85. Whittington, M. A., Jefferys, J. G., and Traub, R. D. 1996. Effects of intravenous anaesthetic agents on fast inhibitory oscillations in the rat hippocampus in vitro. Br J Pharmacol, 118(8), 1977–1986.PubMedGoogle Scholar
  86. Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., and Buhl, E. H. 2000. Inhibitionbased rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol, 38, 315–336.CrossRefPubMedGoogle Scholar
  87. Wittner, L., Henze, D. A., Zaborszky, L., and Buzsaki, G. 2007. Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct Funct, 212(1), 75–83.CrossRefPubMedGoogle Scholar
  88. Wulff, P., Ponomarenko, A. A., Bartos, M., Korotkova, T. M., Fuchs, E. C., Bähner, F., Both, M., Tort, A. B. L., Kopell, N., Wisden, W., and Monyer, H. 2009. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci USA, 106(9), 3561–3566.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • N. Kopell
    • 1
  • C. Börgers
    • 2
  • D. Pervouchine
    • 3
  • P. Malerba
    • 4
  • A. Tort
    • 5
  1. 1.Department of Mathematics and Center for BioDynamicsBoston UniversityBostonUSA
  2. 2.Department of MathematicsTufts UniversityMedfordUSA
  3. 3.Faculty of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia
  4. 4.Center for BioDynamics and Department of MathematicsBoston UniversityBostonUSA
  5. 5.Edmond and Lily Safra International Institute of Neuroscience of NatalFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations