The Making of a Detailed CA1 Pyramidal Neuron Model

  • Panayiota PoiraziEmail author
  • Eleftheria-Kyriaki Pissadaki
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 5)


The CA1 region of the hippocampal formation plays a key role in numerous learning and memory processes including working memory (Lee, 2002, 2003, 2004; Lee et al., 2005) acquisition and retrieval of contextual fear conditioning (Lee, 2004), temporal pattern completion (Hoang, 2008), temporal processing of information (Hunsaker et al., 2008), spatial and object novelty detection (Hunsaker et al., 2007; Vago, 2008) and several others. However, despite its functional significance, the exact ways in which neurons in the CA1 region contribute to all these memory processes remain elusive. According to a number of modelling studies, the function of the CA1 region is to compare information from its two primary inputs: (a) the Schaffer collateral afferents that relay processed cortical information from layer II of the entorhinal cortex via the trisynaptic loop and (b) the temporoammonic pathway which carries direct sensory information from layer III of the EC (Hjorth-Simonsen, 1972; Steward, 1976; Witter et al., 1988).


Pyramidal Neuron Spike Train Perforant Path Hippocampal Pyramidal Neuron Schaffer Collateral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Achard, P., and De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Comput Biol. 2, e94.Google Scholar
  2. Amitai, Y., Friedman, A., Connors, B., and Gutnick, M. (1993). Regenerative electrical activity in apical dendrites of pyramidal cells in neocortex. Cerebral Cortex 3, 26–28.PubMedCrossRefGoogle Scholar
  3. Andersen, P., Silfvenius, H., Sundberg, S.H., Sveen, O. (1980). A comparison of distal and proximal dendritic synapses on CA1 pyramids on guinea pig hippocampal slices in vitro. J Physiol 307, 273–299.PubMedGoogle Scholar
  4. Archie, K.A., and Mel, B.W. (2000). A model for intradendritic computation of binocular disparity. Nat Neurosci 3, 54–63.PubMedCrossRefGoogle Scholar
  5. Ariav, G., Polsky, A., and Schiller, J. (2003). Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23, 7750–7758.PubMedGoogle Scholar
  6. Ascoli, G.A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci 7, 318–324.PubMedCrossRefGoogle Scholar
  7. Avery, R.B., and Johnston, D. (1997). Ca2+ channel antagonist U-92032 inhibits both T-type Ca2+ channels and Na+ channels in hippocampal CA1 pyramidal neurons. J Neurophysiol 77, 1023–1028.PubMedGoogle Scholar
  8. Bernander, O., Douglas, R.J., Martin, K.A., and Koch, C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88, 11569–11573.PubMedCrossRefGoogle Scholar
  9. Bernander, O., Koch, C., and Douglas, R.J. (1994). Amplification and linearization of distal synaptic input to cortical pyramidal cells. J Neurophysiol 72, 2743–2753.PubMedGoogle Scholar
  10. Borg-Graham, L. (1998). Interpretations of data and mechanisms for hippocampal pyramidal cell models. In Cerebral Cortex (New York: Kluwer Academic/Plenum Publishers), pp. 19–138.Google Scholar
  11. Bowden, S.E., Fletcher, S., Loane, D.J., and Marrion, N.V. (2001). Somatic colocalization of rat SK1 and D class (Ca(v)1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J Neurosci 21, RC175.Google Scholar
  12. Burkitt, N. (2006). A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input. Biol Cybern 95(1), 1–19.Google Scholar
  13. Burkitt, N. (2006). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95(1), 97–112.Google Scholar
  14. Cajal, S.R.Y. (1995). Histology of the Nervous System (New York: Oxford).Google Scholar
  15. Cannon, R.C., Turner, D.A., Pyapali, G.K., and Wheal, H.V. (1998). An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods 84, 49–54.PubMedCrossRefGoogle Scholar
  16. Cash, S., and Yuste, R. (1999). Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394.PubMedCrossRefGoogle Scholar
  17. Cauller, L.J., and Connors, B.W. (1994). Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci 14, 751–762.PubMedGoogle Scholar
  18. Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 431, 782–788.PubMedCrossRefGoogle Scholar
  19. Contreras, D., Destexhe, A., and Steriade, M. (1997). Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol 78, 335–350.PubMedGoogle Scholar
  20. Day, M., Carr, D.B., Ulrich, S., Ilijic, E., Tkatch, T., and Surmeier, D.J. (2005). Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 25, 8776–8787.PubMedCrossRefGoogle Scholar
  21. De Schutter, E., and Bower, J.M. (1994). Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci USA 91, 4736–4740.PubMedCrossRefGoogle Scholar
  22. Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1, 195–230.PubMedCrossRefGoogle Scholar
  23. Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1997). Kinetic models of synaptic transmission. In Methods in Neuronal Modeling, C. Koch, and I. Segev, eds. (Cambridge, MA: MIT Press).Google Scholar
  24. Dvorak-Carbone, H., and Schuman, E.M. (1999). Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing. J Neurophysiol 82, 3213–3222.PubMedGoogle Scholar
  25. Gasparini, S., and Magee, J.C. (2006). State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26, 2088–2100.PubMedCrossRefGoogle Scholar
  26. Gasparini, S., Migliore, M., and Magee, J.C. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24, 11046–11056.PubMedCrossRefGoogle Scholar
  27. Gerstner, W., and Kistler, W. (2002). Spiking Neurons Models: Single Neurons, Populations, Plasticity. Cambridge, UK: Cambridge University Press.Google Scholar
  28. Golding, N.L., Jung, H.Y., Mickus, T., and Spruston, N. (1999). Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19, 8789–8798.PubMedGoogle Scholar
  29. Golding, N.L., Kath, W.L., and Spruston, N. (2001). Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86, 2998–3010.PubMedGoogle Scholar
  30. Golding, N.L., Mickus, T.J., Katz, Y., Kath, W.L., and Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568, 69–82.PubMedCrossRefGoogle Scholar
  31. Golding, N.L., and Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200.PubMedCrossRefGoogle Scholar
  32. Golomb, D., Yue, C., and Yaari, Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. pp. 1912–1926.Google Scholar
  33. Gomez González, J.F., Mel, B.W., and Poirazi, P. (2009). Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time. submitted.Google Scholar
  34. Graham, B.P. (2001). Pattern recognition in a compartmental model of a CA1 pyramidal neuron. Network 12, 473–492.PubMedGoogle Scholar
  35. Hasselmo, M., and Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14, 3898–3914.PubMedGoogle Scholar
  36. Hausser, M., Spruston, N., and Stuart, G.J. (2000). Diversity and dynamics of dendritic signaling. Science 290, 739–744.PubMedCrossRefGoogle Scholar
  37. Herz, A.V.M., Gollisch, T., Machens, C.K., and Jaeger, D. (2006). Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796), 80–85.PubMedCrossRefGoogle Scholar
  38. Hines, M.L., and Carnevale, N.T. (1997). The NEURON simulation environment. Neural Comput 9, 1179–1209.PubMedCrossRefGoogle Scholar
  39. Hjorth-Simonsen, A., and Jeune, B. (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144, 215–232.PubMedCrossRefGoogle Scholar
  40. Hoang, L., Kesner, R.P. (2008). Dorsal hippocampus, CA3, and CA1 lesions disrupt temporal sequence completion. Behav Neurosci 122, 9–15.PubMedCrossRefGoogle Scholar
  41. Hoffman, D.A., Magee, J.C., Colbert, C.M., and Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875.PubMedCrossRefGoogle Scholar
  42. Holtmaat, A., De Paola, V., Wilbrecht, L., and Knott, G.W. (2008). Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav Brain Res 192, 20–25.PubMedCrossRefGoogle Scholar
  43. Holtmaat, A.J., Trachtenberg, J.T., Wilbrecht, L., Shepherd, G.M., Zhang, X., Knott, G.W., and Svoboda, K. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291.PubMedCrossRefGoogle Scholar
  44. Hunsaker, M., Lee, B., and Kesner, R.P. (2008). Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behav Brain Res. 188, 310–315.PubMedCrossRefGoogle Scholar
  45. Hunsaker, M., Mooy, G.G., Swift, J.S., Kesner, R.P. (2007). Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. Behav Neurosci 121, 742–750.PubMedCrossRefGoogle Scholar
  46. Jarsky, T., Roxin, A., Kath, W.L., and Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8, 1667–1676.PubMedCrossRefGoogle Scholar
  47. Johnston, D., and Amaral, D. (2005). Hippocampus. In The Synaptic Organization of the Brain, G. Shepherd, ed. (New York: Oxford University Press), pp. 455–498.Google Scholar
  48. Johnston, D., Christie, B.R., Frick, A., Gray, R., Hoffman, D.A., Schexnayder, L.K., Watanabe, S., and Yuan, L.L. (2003). Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358, 667–674.PubMedCrossRefGoogle Scholar
  49. Johnston, D., Hoffman, D.A., Colbert, C.M., and Magee, J.C. (1999). Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol 9, 288–292.PubMedCrossRefGoogle Scholar
  50. Johnston, D., Hoffman, D.A., Magee, J.C., Poolos, N.P., Watanabe, S., Colbert, C.M., and Migliore, M. (2000). Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525 Pt 1, 75–81.Google Scholar
  51. Johnston, D., and Narayanan, R. (2008). Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31, 309–316.PubMedCrossRefGoogle Scholar
  52. Jung, H.Y., Mickus, T., and Spruston, N. (1997). Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 17, 6639–6646.PubMedGoogle Scholar
  53. Katz, Y., Kath, W.L., Spruston, N., and Hasselmo, M.E. (2007). Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Comput Biol 3, e234.Google Scholar
  54. Keren, N., Peled, N., and Korngreeen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94, 3730–3742.PubMedCrossRefGoogle Scholar
  55. Kesner, R.P., Lee, I., and Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci 15, 333–351.PubMedGoogle Scholar
  56. Kim, J., Jung, S.-C., Clemens, A.M., Petralia, R.S., and Hoffman, D.A. (2007). Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54, 933–947.PubMedCrossRefGoogle Scholar
  57. Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons (New York: Oxford University Press).Google Scholar
  58. Koch, C., Poggio, T., and Torre, V. (1983). Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80, 2799–2802.PubMedCrossRefGoogle Scholar
  59. Koch, C., and Segev, I. (2000). The role of single neurons in information processing. Nat Neurosci 3 Suppl, 1171–1177.Google Scholar
  60. Larkum, M.E., Senn, W., and Luscher, H.R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex 14, 1059–1070.PubMedCrossRefGoogle Scholar
  61. Larkum, M.E., Zhu, J.J., and Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341.PubMedCrossRefGoogle Scholar
  62. Laurent, G., and Borst, A. (2007). Short stories about small brains: linking biophysics to computation. In Dendrites, G.J. Stuart et al., ed. (New York: Oxford University Press), pp. 441–464.Google Scholar
  63. Lee, I., Jerman, TS, Kesner, RP. (2005). Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol Learn Mem. 84, 138–147.PubMedCrossRefGoogle Scholar
  64. Lee, I., and Kesner, R.P. (2002). Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 5, 162–168.PubMedCrossRefGoogle Scholar
  65. Lee, I., and Kesner, R.P. (2003). Differential roles of dorsal hippocampal subregions in spatial working memory with short versus intermediate delay. Behav Neurosci 117, 1044–1053.PubMedCrossRefGoogle Scholar
  66. Lee, I., and Kesner, R.P. (2004). Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14, 301–310.PubMedCrossRefGoogle Scholar
  67. Li, X., and Ascoli, G.A. (2006). Computational simulation of the input-output relationship in hippocampal pyramidal cells. J Comput Neurosci 21, 191–209.PubMedCrossRefGoogle Scholar
  68. Liebmann, L., Karst, H., Sidiropoulou, K., van Gemert, N., Meijer, O.C., Poirazi, P., and Joels, M. (2008). Differential effects of corticosterone on the slow afterhyperpolarization in the basolateral amygdala and CA1 region: possible role of calcium channel subunits. J Neurophysiol 99, 958–968.PubMedCrossRefGoogle Scholar
  69. London, M., and Hausser, M. (2005). Dendritic computation. Annu Rev Neurosci 28, 503–532.PubMedCrossRefGoogle Scholar
  70. Losonczy, A., and Magee, J.C. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307.PubMedCrossRefGoogle Scholar
  71. Losonczy, A., Makara, J.K., and Magee, J.C. (2008). Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441.PubMedCrossRefGoogle Scholar
  72. Maccaferri, G., McBain, C.J. (1995). Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. 15 (1), 137–145.Google Scholar
  73. Magee, J., Hoffman, D., Colbert, C., and Johnston, D. (1998). Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol 60, 327–346.PubMedCrossRefGoogle Scholar
  74. Magee, J.C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18, 7613–7624.PubMedGoogle Scholar
  75. Magee, J.C., and Cook, E.P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3, 895–903.PubMedCrossRefGoogle Scholar
  76. Magee, J.C., and Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.PubMedCrossRefGoogle Scholar
  77. Magee, J.C., and Johnston, D. (2005). Plasticity of dendritic function. Curr Opin Neurobiol 15, 334–342.PubMedCrossRefGoogle Scholar
  78. Markaki, M., Orphanoudakis, S., and Poirazi, P. (2005). Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process. Neurocomputing 65–66, 305–314.CrossRefGoogle Scholar
  79. Marrion, N.V., and Tavalin, S.J. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905.PubMedCrossRefGoogle Scholar
  80. Megias, M., Emri, Z., Freund, T.F., Gulyas, A.I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540.PubMedCrossRefGoogle Scholar
  81. Mel, B.W. (1992a). NMDA-Based pattern discrimination in a modeled cortical neuron. Neural Comput 4, 502–516.CrossRefGoogle Scholar
  82. Mel, B.W. (1992b). The clusteron: toward a simple abstraction for a complex neuron. In Advances in Neural Information Processing Systems, J. Moody, S. Hanson, and R. Lippman, eds. (San Mateo, CA: Morgan Kaufmann), pp. 35–42.Google Scholar
  83. Mel, B.W. (1993). Synaptic integration in an excitable dendritic tree. J Neurophysiol 70, 1086–1101.PubMedGoogle Scholar
  84. Mel, B.W. (1999). Computational neuroscience. Think positive to find parts. Nature 401, 759–760.PubMedCrossRefGoogle Scholar
  85. Mel, B.W., Ruderman, D.L., and Archie, K.A. (1998). Translation-invariant orientation tuning in visual “complex” cells could derive from intradendritic computations. J Neurosci 18, 4325–4334.PubMedGoogle Scholar
  86. Metz, A.E., Spruston, N., and Martina, M. (2007). Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. J Physiol 581, 175–187.PubMedCrossRefGoogle Scholar
  87. Migliore, M. (2003). On the integration of subthreshold inputs from Perforant Path and Schaffer Collaterals in hippocampal CA1 pyramidal neurons. J Comput Neurosci 14, 185–192.PubMedCrossRefGoogle Scholar
  88. Migliore, M., Ferrante, M., and Ascoli, G.A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94, 4145–4155.PubMedCrossRefGoogle Scholar
  89. Migliore, M., Hoffman, D.A., Magee, J.C., and Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7, 5–15.PubMedCrossRefGoogle Scholar
  90. Migliore, M., Messineo, L., and Ferrante, M. (2004). Dendritic Ih selectively blocks temporal summation of unsynchronized sistal inputs in CA1 pyramidal neurons. J Comput Neurosci 16, 5–13.PubMedCrossRefGoogle Scholar
  91. Migliore, M., and Shepherd, G.M. (2002). Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3, 362–370.PubMedCrossRefGoogle Scholar
  92. Moczydlowski, E., and Latorre, R. (1983). Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82, 511–542.PubMedCrossRefGoogle Scholar
  93. Nevian, T., Larkum, M.E., Polsky, A., and Schiller, J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10, 206–214.PubMedCrossRefGoogle Scholar
  94. O’Reilly, R., McClelland, J.L. (1994). Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4, 661–682.PubMedCrossRefGoogle Scholar
  95. Otmakhova, N.A., Otmakhov, N., and Lisman, J.E. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. J Neurosci 22, 1199–1207.PubMedGoogle Scholar
  96. Pissadaki, E.K., and Poirazi, P. (2007). Modulation of excitability in CA1 pyramidal neurons via the interplay of entorhinal cortex and CA3 inputs. Neurocomputing 70, 1735–1740.CrossRefGoogle Scholar
  97. Pissadaki, E.K., Sidiropoulou K., Reczko M., and Poirazi, P. Encoding of spatio-temporal input characteristics by a single CA1 pyramidal neuron model. (submitted).Google Scholar
  98. Poirazi, P., Brannon, T., and Mel, B.W. (2003a). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987.PubMedCrossRefGoogle Scholar
  99. Poirazi, P., Brannon, T., and Mel, B.W. (2003b). Pyramidal neuron as two-layer neural network. Neuron 37, 989–999.PubMedCrossRefGoogle Scholar
  100. Poirazi, P., and Mel, B.W. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796.PubMedCrossRefGoogle Scholar
  101. Polsky, A., Mel, B.W., and Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7, 621–627.PubMedCrossRefGoogle Scholar
  102. Poolos, N.P., Migliore, M., and Johnston, D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5, 767–774.PubMedGoogle Scholar
  103. Raab-Graham, K., Haddick, P.C., Jan, Y.N., and Jan, L.Y. (2006). Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314, 144–148.PubMedCrossRefGoogle Scholar
  104. Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. In Neural Theory and Modeling, R.F. Reiss, ed. (Stanford University Press).Google Scholar
  105. Reyes, A. (2001). Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24, 653–675.PubMedCrossRefGoogle Scholar
  106. Rolls, E., and Treves, A. (1994). Neural networks in the brain involved in memory and recall. Prog Brain Res 102, 335–341.PubMedCrossRefGoogle Scholar
  107. Rolls, E.T., and Kesner, R.P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79, 1–48.PubMedCrossRefGoogle Scholar
  108. Sah, P., and Bekkers, J.M. (1996). Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. J Neurosci 16, 4537–4542.PubMedGoogle Scholar
  109. Shao, L.R., Halvorsrud, R., Borg-Graham, L., and Storm, J.F. (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521 Pt 1, 135–146.Google Scholar
  110. Shepherd, G.M., and Brayton, R.K. (1987). Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience 21, 151–165.PubMedCrossRefGoogle Scholar
  111. Sidiropoulou, K., Joels, M., and Poirazi, P. (2007). Modeling stress-induced adaptations in Ca2+ dynamics. Neurocomputing 70, 1640–1644.CrossRefGoogle Scholar
  112. Sidiropoulou, K., Pissadaki, E.K., and Poirazi, P. (2006). Inside the brain of a neuron. EMBO Rep 7, 886–892.PubMedCrossRefGoogle Scholar
  113. Softky, W. (1994). Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58, 13–41.PubMedCrossRefGoogle Scholar
  114. Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9, 206–221.PubMedCrossRefGoogle Scholar
  115. Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300.PubMedCrossRefGoogle Scholar
  116. Steward, O., and Scoville, S.A. (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169, 343–370.CrossRefGoogle Scholar
  117. Stuart, G., and Spruston, N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18, 3501–3510.PubMedGoogle Scholar
  118. Stuart, G., Spruston, N., Sakmann, B., and Hausser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20, 125–131.PubMedCrossRefGoogle Scholar
  119. Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794.PubMedCrossRefGoogle Scholar
  120. Treves, A. (2004). Computational constraints between retrieving the past and predicting the future, and the CA3–CA1 differentiation. Hippocampus 14, 539–556.PubMedCrossRefGoogle Scholar
  121. Vago, D., and Kesner, R.P. (2008). Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189, 273–283.PubMedCrossRefGoogle Scholar
  122. Vinogradova, O. (2001). Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11, 578–598.PubMedCrossRefGoogle Scholar
  123. Watanabe, S., Hoffman, D.A., Migliore, M., and Johnston, D. (2002). Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99, 8366–8371.PubMedCrossRefGoogle Scholar
  124. Wei, D.S., Mei, Y.A., Bagal, A., Kao, J.P., Thompson, S.M., Tang, C.M. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275.PubMedCrossRefGoogle Scholar
  125. Witter, M.P., Griffioen, A.W., Jorritsma-Byham, B., and Krijnen, J.L. (1988). Entorhinal projections to the hippocampal CA1 region in the rat: an underestimated pathway. Neurosci Lett 85, 193–198.PubMedCrossRefGoogle Scholar
  126. Zuhlke, R.D., Pitt, G.S., Tsien, R.W., and Reuter, H. (2000). Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem 275, 21121–21129.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Panayiota Poirazi
    • 1
    Email author
  • Eleftheria-Kyriaki Pissadaki
    • 1
  1. 1.Institute of Molecular Biology and Biotechnology (IMBB)Foundation for Research and Technology-Hellas (FORTH)HeraklionGreece

Personalised recommendations