Peptides as Molecular Receptors

  • Ibtisam E. TothillEmail author


The use of specific and sensitive sensing layers for molecular diagnosis and biosensor developments is crucial for producing a successful device. The sensing layers are required to be stable and robust for sample analysis (serum, urine, water, soil extracts and foods), storage and application in field conditions. Therefore, the technology is advancing to replace nature molecules with synthetic materials that are more stable and robust for sensing purposes. A range of novel approaches have recently been used based on synthetic chemistry and computational methodologies to complement natural affinity systems with synthetic ligands. Peptides have emerged as one of the promising approaches to synthetic biomimics. The characteristic properties of synthetic peptides can render them as potential alternatives to antibodies and natural receptors for biosensor application. Different methodologies are used today to design and discover sensitive and selective peptides for specific analytes. These include computational chemistry, combinatorial chemistry, phage display technology and molecular imprinting. This chapter introduces the concept of using peptides as sensing materials and cover methods of their design, selection, synthesis and use as receptors in sensors and diagnostics applications. Problems and challenges facing this technology are also discussed.


Peptides Molecular receptors Biosensors Synthetic receptors 



Deoxyribonucleic acid


Solid phase extraction columns


High-performance liquid chromatography


Gas chromatography


Computer-aided molecular design


Molecularly Imprinted Polymers


Polyethylene glycol acrylamide


High-throughput screening


Dynamic combinatorial library


N-methyl quinuclidinium iodide


Acetylcholine iodide

ab MCR

Aqueous-based Multi-Component Reaction


Nuclear magnetic resonance


Quantitative structure-activity relationships


Surface plasmon resonance


Quartz crystal microbalance


  1. Alberts IL, Todorov NP, Dean PM (2005) Receptor flexibility in de novo ligand design and docking. J Med Chem 48(21):6585–6596CrossRefGoogle Scholar
  2. Allinger NL (1977) Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134CrossRefGoogle Scholar
  3. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons I. J Am Chem Soc 111:8551–8566CrossRefGoogle Scholar
  4. Allinger NL, Li F, Yan L (1990) Molecular mechanics. The MM3 force field for alkenes. J Comput Chem 11:848–867CrossRefGoogle Scholar
  5. Allinger NL, Chen JA, Lii JH (1996) An improved force field (MM4) for saturated hydrocarbons. J Comput Chem 17:642–668CrossRefGoogle Scholar
  6. Antel J (1999) Integration of combinatorial chemistry and structure-based drug design. Curr Opin Drug Discov Devel 2:224–233Google Scholar
  7. Apostolakis J, Caflisch A (1999) Computational ligand design. Comb Chem High Throughput Screen 2(2):91–104Google Scholar
  8. Arap MA (2005) Phage display technology: applications and innovations. Genet Mol Biol 28:1–9 ISSN 1415-4757CrossRefGoogle Scholar
  9. Azzazy HM, Highsmith WE Jr (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35:425–445CrossRefGoogle Scholar
  10. Barbas CF, Burton DR, Scott JK, Silverman GJ (2000) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–24Google Scholar
  11. Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry, 6th edn. W.H. Freeman and Co Ltd, New York, NY. ISBN ISBN 978-0716767664Google Scholar
  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  13. Bertelli M, El-Bastawissy E, Knaggs MH, Barratt MP, Hanau S, Gilbert IH (2001) Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei. J Comput Aided Mol Des 15:465–475CrossRefGoogle Scholar
  14. Blundell TL, Jhotti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54CrossRefGoogle Scholar
  15. Bohacek RS, McMartin C (1997) Modern computational chemistry and drug discovery: structure generating programs. Curr Opin Chem Biol 1:157–161CrossRefGoogle Scholar
  16. Böhm HJ (1992) The computer program Ludi: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78CrossRefGoogle Scholar
  17. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243CrossRefGoogle Scholar
  18. Böhm HJ (1995) Site-directed structure generation by fragment-joining. Perspect Drug Discov Des 3:21–33CrossRefGoogle Scholar
  19. Böhm HJ (1996) Towards the automatic design of synthetically accessible protein ligands: peptides, amides and peptidomimetics. J Comput Aided Mol Des 10:265–272CrossRefGoogle Scholar
  20. Böhm HJ, Klebe G (1996) What can we learn from molecular recognition in protein-ligand complexes for the design of new drugs? Angew Chem Int Ed Engl 35:2588–2614CrossRefGoogle Scholar
  21. Brady PA, Sanders JKM (1997a) Selection approaches to catalytic systems. Chem Soc Rev 26:326–337CrossRefGoogle Scholar
  22. Brady PA, Sanders JKM (1997b) J Chem Soc Perkin Trans 1:3237–3253CrossRefGoogle Scholar
  23. Brisig B, Sanders JKM, Otto S (2003) Angew Chem Int Ed 42(11):1270–1273CrossRefGoogle Scholar
  24. Bursavich MG, Rich DH (2002) Designing non-peptides peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J Med Chem 31:541–558CrossRefGoogle Scholar
  25. Calama MC, Hulst R, Fokkens R, Nibbering, NMM, Timmerman P, Reinhoudt DN (1998) Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems. Chem Commun 1021–1022Google Scholar
  26. Chen B, Bestetti G, Turner APF (1998) The synthesis and screening of a combinatorial library for affinity ligands for glycosylated haemoglobin. Biosens Bioelectron 13:779–785CrossRefGoogle Scholar
  27. Chianella I, Lotierzo M, Piletsky S, Tothill IE, Chen B, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293CrossRefGoogle Scholar
  28. Chianella I, Karim K, Piletska E, Preston C, Piletsky SA (2006) Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: adsorbent for abacavir. Anal Chim Acta 559:73–78CrossRefGoogle Scholar
  29. Christensen IT, Jorgensen FS (1997) Molecular mechanics calculations of proteins. Comparison of different energy minimization strategies. J Biomol Struct Dyn 15:473–488Google Scholar
  30. Clark M, Cramer RD, Vanopdenbosh N (1989) Validation of the general-purpose Tripos 5.2 force-field. J Comput Chem 10:982–1012CrossRefGoogle Scholar
  31. Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711CrossRefGoogle Scholar
  32. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  33. Cousins GRL, Poulsen S-A, Sanders JKM (1999) Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles. Chem Commun 1575–1576Google Scholar
  34. Cousins GRL, Poulsen S-A, Sanders JKM (2000) Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. Curr Opin Chem Biol 4:270–279CrossRefGoogle Scholar
  35. Cousins GRL, Furlan RLE, Ng YF, Redman JE, Sanders JKM (2001) Angew Chem Int Ed Engl 40:423–428CrossRefGoogle Scholar
  36. Crabtree RH (1999) Combinatorial and raid screening approaches to homogeneous catalyst discover and optimization. Chem Commun 1611–1616Google Scholar
  37. Cramer RD (1983) Computer graphics in drug design. Pharm Int 106–107Google Scholar
  38. Day R (1999) The development of a synthetic receptor specific to glycosylated haemoglobine for biosensing application. PhD thesis, Cranfield UniversityGoogle Scholar
  39. DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287:1279–1283CrossRefGoogle Scholar
  40. Diercks T, Coles M, Kessler H (2001) Applications of NMR in drug discover. Curr Opin Chem Biol 5:285–291CrossRefGoogle Scholar
  41. Eguchi M, Kahn M (2002) Design, synthesis and application of peptide secondary structure mimetics. Mini Rev Med Chem 2:447–462CrossRefGoogle Scholar
  42. El-Hajji S, Gannon G, Chen B, Tothill IE (2003a) Development of artificial receptor for androgen detection, affinity interactions 2003. 15th international conference, 27 July–1 August, Cambridge, UKGoogle Scholar
  43. El-Hajji S, Gannon G, Chen B, Tothill IE (2003b) Artificial receptor development for androgen residues. Synthetic receptor conference, 15–17 October, Lisbon, PortugalGoogle Scholar
  44. Fontana W, Stadler PF, Tarazona P, Weinberger ED, Schuster P (1993) Phys Rev E 47:2083–2099CrossRefGoogle Scholar
  45. Forst CV, Reidys C, Weber J (1995) In: Moran F (ed) Advances in artificial life, vol 929. Springer, Berlin, pp 3628–4147Google Scholar
  46. Furlan RLE, Cousins GRL, Sanders JKM (2000) Chem Commun 18:1761–1762CrossRefGoogle Scholar
  47. Furlan RLE, Ng YF, Otto S, Sanders JKM (2001) J Am Chem Soc 123(36):8876–8877CrossRefGoogle Scholar
  48. Ganesan A (1998) Strategies for the dynamic integration of combinatorial synthesis and screening. Angew Chem Int Ed Engl 37:2828–2831CrossRefGoogle Scholar
  49. Geysen HM, Rodda SJ, Mason TJ (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 23:709–715CrossRefGoogle Scholar
  50. Giraudi G, Giovannoli C, Tozzi C, Baggiani C, Anfossi L (2000) Estradiol binding synthetic polypeptides. Chem Commun 13:1135–1136CrossRefGoogle Scholar
  51. Giraudi G, Giovannoli C, Tozzi C, Baggiani C, Anfossi L (2003) Molecular recognition properties of peptide mixtures obtained by polymerisation of amino acids in the presence of estradiol. Anal Chim Acta 481:41–53CrossRefGoogle Scholar
  52. Goodford PJ (1985) A computational procedure for determining energetically favourable binding sites on biologically important macromolecules. J Med Chem 28:849–857CrossRefGoogle Scholar
  53. Goodman JM (1998) Chemical applications of molecular modelling. Royal Society of Chemistry Press, London. ISBN ISBN 0-85404-579-1Google Scholar
  54. Gunsteren WF, Dolenc J, Mark AE (2008) Molecular simulation as an aid to experimentalists. Curr Opin Struct Biol 18(2):149–153Google Scholar
  55. Gutte B, Däumigen M, Wittschieber E (1979) Design, synthesis and characterisation of a 34-residue polypeptide that interacts with nucleic acids. Nature 281:650–655CrossRefGoogle Scholar
  56. Hagiwara D, Miyake H, Murano K, Morimoto H, Murai M, Fujii T, Nakanishi I, Matsuo M (1993) Studies on neurokinin antagonist. 3, Design and structure-activity relationships of new branched tripeptide Na-(substituted L-apartyl, L-ornithyl, or L-lysyl)-N-methyl-N-(phenylmethyl)-L-phenylalaninamides as substance P antagonist. J Med Chem 36:2266–2278CrossRefGoogle Scholar
  57. Hajduk PJ, Meadows RP, Fesik SW (1999) NMR-based screening in drug discovery. Q Rev Biophys 32:211–240CrossRefGoogle Scholar
  58. Hamilton DG, Feeder N, Teat SJ, Sanders JKM (1998) Reversible synthesis of π-associated [2] catenanes by ring-closing metathesis: towards dynamic combinatorial libraries of catenanes. New J Chem 22:1019–1021CrossRefGoogle Scholar
  59. Heurich M (2008) Development of an affinity sensor for ochratoxin A. PhD thesis, Cranfield University, England, UKGoogle Scholar
  60. Hioki H, Still WC (1998) Chemical evolution: a model system that selects and amplifies a receptor for the tripeptide (d)Pro(L)Val(D)Val. J Org Chem 63(4):904–905CrossRefGoogle Scholar
  61. Hochgurtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV (2002) Proc Natl Acad Sci USA 99(6):3382–3387CrossRefGoogle Scholar
  62. Hochgurtel M, Biesinger R, Kroth H, Piecha D, Hofmann MW, Krause S, Schaaf O, Nicolau C, Eliseev AV (2003) J Med Chem 46(3):356–358CrossRefGoogle Scholar
  63. Hollman AM, Scherrer NT, Cammers-Goodwin A, Bhattacharyya D (2004) Separation of dilute electrolytes in poly(amino acid) functionalized microporous membranes: model evaluation and experimental results. J Memb Sci 239:65–79CrossRefGoogle Scholar
  64. Höltje HD, Sippl W, Rognan D, Folkers G (2008) Molecular modeling: basic principle and application, 3rd edn. Wiley-VCH, Weinheim, p 310. ISBN: 978-3-527-31568-0In: Mannhold R, Kubiny H, Timmerman H (eds)Google Scholar
  65. Huc I, Lehn JM (1997) Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc Natl Acad Sci USA 94:2106–2110CrossRefGoogle Scholar
  66. Huc I, Nguyen R (2001) Dynamic combinatorial chemistry. Comb Chem High Throughput Screen 4:53–74Google Scholar
  67. Jin AY, Leung FY, Weaver DFJ (1997) J Comput Chem 18:1971–1984CrossRefGoogle Scholar
  68. Jones DT (1994) Protein Sci 3:567–574CrossRefGoogle Scholar
  69. Jones G, Willett P (1995) Docking small-molecule ligands into active sites. Curr Opin Biotechnol 6:652–656CrossRefGoogle Scholar
  70. Karan C, Miller BL (2001) J Am Chem Soc 123:7455–7456CrossRefGoogle Scholar
  71. Katayama Y, Ohuchi Y, Higashi H, Kudo Y, Maeda M (2000) The design of cyclic AMP-recognizing oligopeptides and evaluation of its capability for cyclic AMP recognition using and electrochemical system. Anal Chem 72:4671–4674CrossRefGoogle Scholar
  72. Kay BK, Adey NB, He YS, Manfredi JP, Mataragnon AH, Fowlkes DM (1993) An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequences with affinity to selected targets. Gene 128:59–65CrossRefGoogle Scholar
  73. Kempe M (1996) Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal Chem 68:1948–1953CrossRefGoogle Scholar
  74. Klekota B, Miller BJ (1999) Dynamic diversity and small molecule evolution: a new paradigm for ligand identification. Trends Biotechnol 17:205–209CrossRefGoogle Scholar
  75. Kobayashi S, Kitadai M, Sameshima K, Ishii Y, Tanaka A (1999) A theoretical investigation of the conformational changing of dioxins in the binging site of dioxin receptor model; role of absolute hardness – electronegativity activity diagrams for biological activity. J Mol Struct 475:203–217CrossRefGoogle Scholar
  76. Koivunen E, Arap W, Rajotte D, Lahdenranta J, Pasqualini R (1999) Identification of receptor ligands with phage display peptide libraries. J Nucl Med 40:883–888Google Scholar
  77. Kollman P (1993) Free energy calculations-applications to chemical and biological phenomena. Chem Rev 93:2395–2417CrossRefGoogle Scholar
  78. Krasinski A, Radic Z, Manetsch R, Raushel J, Taylor P, Sharpless KB, Kolb HC (2005) J Am Chem Soc 127:6686–6692CrossRefGoogle Scholar
  79. Krovat EM, Steindl T, Langer T (2005) Recent advances in docking and scoring. Curr Comput Aided Drug Des 1:93–102CrossRefGoogle Scholar
  80. Kubota Y, Sakamoto S, Yamaguchi K, Fujita M (2002) Proc Natl Acad Sci USA 99:4854–4856CrossRefGoogle Scholar
  81. Labanowski J, Motoc I, Naylor CB, Mayer D, Dammkoehler RA (1986) Three-dimensional quantitative structure-activity relationships. 2. Conformational mimicry and topographical similarity of flexible molecules. Quant Struct-Act Rel 5:138–152CrossRefGoogle Scholar
  82. Lam KS, Renil M (2002) From combinatorial chemistry to chemical microarray. Curr Opin Chem Biol 6:353–358CrossRefGoogle Scholar
  83. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand binding activity. Nature 354:82–84CrossRefGoogle Scholar
  84. Lavastre O, Morkrn JP (1999) Discovery of novel catalysts for allylic alkylation with a visual colorimetric assay. Angew Chem Int Ed Engl 38:3163–3165CrossRefGoogle Scholar
  85. Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463CrossRefGoogle Scholar
  86. Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, Hanson RW (2001) Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of polycation. J Biol Chem 276:34379–34387CrossRefGoogle Scholar
  87. Lotierzo M, Henry OYF, Piletsky S, Tothill I, Cullen D, Kania M, Hock B, Turner APF (2004) Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens Bioelectron 20:145–152CrossRefGoogle Scholar
  88. Lybrand TP (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5:224–228CrossRefGoogle Scholar
  89. Ma JS (2003) Unnatural amino acids in drug discovery. Chim Oggi 21:65–68Google Scholar
  90. Manetsch R, Krasinski A, Radic Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) J Am Chem Soc 126:12809–12818CrossRefGoogle Scholar
  91. Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210CrossRefGoogle Scholar
  92. Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11:314–328CrossRefGoogle Scholar
  93. Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14CrossRefGoogle Scholar
  94. Mosbach K, Ramstrom O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology 14:165–170Google Scholar
  95. Moser R, Thomas RM, Gutte B (1983) An artificial crystalline DDT-binding polypeptide. FEBS Lett 157:247–251CrossRefGoogle Scholar
  96. Muegge I, Rarey M (2001) Small molecule docking and scoring. Rev Comput Chem 17:1–60CrossRefGoogle Scholar
  97. Nakamura C, Inuyama Y, Shirai K, Sugimoto N, Miyake J (2001) Detection of porphyrin using a short peptide immobilised on a surface plasmon resonance sensor chip. Biosens Bioelectron 16:1095–1100CrossRefGoogle Scholar
  98. Nakamura C, Inuyama Y, Goto H, Obataya I, Kaneko N, Nakamura N, Santo N, Miyake J (2005) Dioxin-binding pentapeptide for use in a high-sensitivity on-bead detection assay. Anal Chem 77:7750–7757CrossRefGoogle Scholar
  99. Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2001) Discovering novel ligands for macro-molecules using X-ray crystallographic screening. Nat Biotechnol 18:1105–1108CrossRefGoogle Scholar
  100. Noda K, Yamasaki R, Hironaka Y, Kitagawa A (2001) Selection of peptides that bind to the core oligosaccharide of R-form LPS from a phage-displayed heptapeptide library. FEMS Microbiol Lett 205:349–354CrossRefGoogle Scholar
  101. O’Neil KT, Hoess RH (1995) Phage display: protein engineering by directed evolution. Curr Opin Struct Biol 4:443–449CrossRefGoogle Scholar
  102. Otto S, Kubik S (2003) J Am Chem Soc 125:7804–7805CrossRefGoogle Scholar
  103. Parker C (2008) Development of an affinity sensor for the detection of aflatoxin m1 in milk. PhD thesis, Cranfield University, England, UKGoogle Scholar
  104. Patel S, Stott IP, Bhakoo M, Elliot P (1998) Patenting computer-designed peptides. J Comput Aided Mol Des 12:543–556CrossRefGoogle Scholar
  105. Payne AWR, Glen RC (1993) Molecular recognition using a binary genetic search algorithm. J Mol Graph 11:74–91CrossRefGoogle Scholar
  106. Piletsky S, Karim K, Piletska EV, Day CJ, Freebairn KW, Legge C, Turner APF (2001) Recognition of ephedrine enentiomers by molecular imprinted polymers designed using a computational approach. Analyst 126:1826–1830CrossRefGoogle Scholar
  107. Piletsky S, Piletska EV, Sergeyeva TA, Nicholls I, Weston D, Turner A (2006a) Synthesis of biologically active molecules by imprinting polymerization. Biopolymers Cell 22:63–68Google Scholar
  108. Piletsky S, Turner NW, Laitenberger P (2006b) Molecularly imprinted polymers in clinical diagnostics – future potential and existing problems. Med Eng Phys 28:971–977CrossRefGoogle Scholar
  109. Poulsen S-A, Gates P, Cousins GRL, Sanders JKM (2000) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of dynamic combinatorial libraries. Rapid Commun Mass Spectrom 14:44–48CrossRefGoogle Scholar
  110. Rachkov A, Minoura NJ (2000) Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatogr A 889:111–118CrossRefGoogle Scholar
  111. Rich DH (2002) Discovery of nonpeptide, peptidomimetic peptidase inhibitors that target alternate enzyme active site conformations. Biopolymers 66:115–125CrossRefGoogle Scholar
  112. Richon AB (1994) An introduction to molecular modelling. Mathematech 1:83Google Scholar
  113. Roberts SL, Furlan RLE, Otto S, Sanders JKM (2003) Org Biomol Chem 1(9):1625–1633CrossRefGoogle Scholar
  114. Rustici M, Bracci L, Lozzi L, Neri P, Santucci A, Soldani P, Spreafico A, Niccolai N (1993) A model of the rabies virus glycoprotein active site. Biopolymers 33:961–969CrossRefGoogle Scholar
  115. Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. J Biotechnol 90:195–229Google Scholar
  116. Saur I, Severin K (2005) Chem Commun 11:1471–1473CrossRefGoogle Scholar
  117. Sawyer TK (1999) Peptidomimetic and nonpeptide drug discovery: chemical nature and biological targets. In: Reid R (ed) Drugs and the pharmaceutical sciences, vol 101. Marcel Dekker, New York, NY, pp 81–114Google Scholar
  118. Sawyer TK, Chorev M (2003) Peptide revolution: genomics, proteomics and therapeutics. Biotechiques 34(3):594–596, 598–599Google Scholar
  119. Schmuck C (2001) Von der molekularen erkennung zum design neuer wirkstoffe. Chem Unserer Zeit 6:356–366CrossRefGoogle Scholar
  120. Schneider G, Böhm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70Google Scholar
  121. Schneider G, Schuchhardt J, Wrede P (1995) Biol Cybern 73:3CrossRefGoogle Scholar
  122. Selassie CD (2003) History of quantitative structure-activity relationships. In: Abraham DJ (ed) Burgers medicinal chemistry and drug discovery, vol 1. Wiley, New York, NY, pp 1–48Google Scholar
  123. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefGoogle Scholar
  124. Smith GP (1991) Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol 2:668–673CrossRefGoogle Scholar
  125. Smith GP, Scott JK (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol 217:228–257CrossRefGoogle Scholar
  126. Steinbach PJ (2005) Introduction to macromolecular simulation. Center for molecular modeling, center for information technology, National Institutes of Health. Accessed 12, Nov. 2009
  127. Steinbach PJ, Brooks BR (1994) Protein simulation below the glass-transition temperature: dependence on cooling protocol. Chem Phys Lett 226:447CrossRefGoogle Scholar
  128. Subrahmanyam S, Piletsky SA, Piletska EV, Karim K, Chen B, Day R, Turner APF (2001) Bite-and-switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16:631–637CrossRefGoogle Scholar
  129. Sundaram R, Dakappagari NK, Kaumaya PT (2002) Synthetic peptides as cancer vaccines. Biopolymers 66:200–216CrossRefGoogle Scholar
  130. Swann PG, Casanova RA, Desai A, Frauenhoff MM, Urbancic M, Slomczynska U, Hopfinger A, Breton GC, Venton D (1997) Nonspecific protease-catalysed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40:617–625CrossRefGoogle Scholar
  131. Szardenings M (2003) Phage display of random peptide libraries: applications, limits, and potential. J Recept Signal Transduct Res 23:307–349CrossRefGoogle Scholar
  132. Takeuchi T, Matsui J (1998) Recognition of drugs and herbicides: strategy in selection of functional monomers for noncovalent molecular imprinting. ACS Symp Ser 703:119–134CrossRefGoogle Scholar
  133. Toko K (2001) Biomimetic sensor technology. Meas Sci Technol 12:221CrossRefGoogle Scholar
  134. Tothill IE (2001) Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agr 30:205–218CrossRefGoogle Scholar
  135. Tothill IE (2003) On-line immunochemical assays for contaminants analysis. In: Tothill IE (ed) Rapid and on-line instrumentation for food quality assurance. Woodhead, Cambridge, ISBN: 1-85573-674-8Google Scholar
  136. Tothill IE, Turner APF (1998) Biosensors: new developments and opportunities in the diagnosis of livestock diseases. Towards livestock disease diagnosis and control in the 21st century. International Atomic Energy Agency, pp 79–94Google Scholar
  137. Tothill IE, Piletsky S, Magan N, Turner APF (2001) New biosensors. In: Kress-Rogers E, Brimelow CJB (eds) Instrumentation and sensors for the food industry, 2nd edn. Woodhead and CRC Press LLC, Cambridge, p 836Google Scholar
  138. Tozzi C, Anfossi L, Giraudi G, Giovannoli C, Baggiani C, Vanni A (2002) Chromatographic characterisation of an estrogen-binding affinity column containing tetrapeptides selected by a combinatorial-binding approach. J Chromatogr A 966:71–79CrossRefGoogle Scholar
  139. Tozzi C, Anfossi L, Giovannoli C (2003a) Affinity chromatography techniques based on the immobilisation of peptides exhibiting specific binding activity. J Chromatogr B 797:289–304CrossRefGoogle Scholar
  140. Tozzi C, Anfossi L, Baggiani C, Giovannoli C, Giraudi G (2003b) A combinatorial approach to obtain affinity media with biding properties towards the aflatoxins. Anal Bioanal Chem 375:994–999Google Scholar
  141. Tsai SC (2002) An introduction to computational biochemistry. Wiley, New York, NYCrossRefGoogle Scholar
  142. Vaidya AA, Lele BS, Kulkami MG, Mashelkar RA (2001) Creating a macromolecular receptor by affinity imprinting. J Appl Polym Sci 81:1075–1083CrossRefGoogle Scholar
  143. Valero M, Camarero JA, Haack T, Mateu MG, Domingo E, Giralt E, Andreu D (2000) Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. J Mol Recognit 13:5–13CrossRefGoogle Scholar
  144. Vedani A, Dobler M (2002) 5d qsar: the key for simulating induced fit? J Med Chem 45:2139–2149CrossRefGoogle Scholar
  145. Vedani A, Dobler MQ (2003) Quantification of wide-range ligand binding to the estrogen receptor – a combination of receptor-mediated alignment and 5d QSAR. Helv Chim Acta 45:2139–2149Google Scholar
  146. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003a) J Am Chem Soc 125:3192–3193CrossRefGoogle Scholar
  147. Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003b) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–2000CrossRefGoogle Scholar
  148. Webster R (2001) Filamentous phage biology. In: Phage Barbas CF, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1.1–1.37Google Scholar
  149. Welling GW, Geurts T, van Gorkum J, Damhof RA, Drijfhout J (1990) Synthetic antibody fragment as ligand in immunoaffinity chromatography. J Chromatogr A 512:337–343CrossRefGoogle Scholar
  150. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284CrossRefGoogle Scholar
  151. Yamanoi Y, Sakamoto Y, Kusukawa T, Fujita M, Sakamoto S, Tamaguchi K (2001) J Am Chem Soc 123(5):980–981CrossRefGoogle Scholar
  152. Yoshizawa M, Nagao M, Umemoto K, Biradha K, Fujita M, Sakamoto S, Yamaguchi K (2003) Chem Commun 15:1808–1809CrossRefGoogle Scholar
  153. Zameo S, Vauzeilles B, Beau JM (2005) Angew Chem Int Ed 44(6):965–969CrossRefGoogle Scholar
  154. Zeger ND, Boersma WJA, Claassen E (eds) (1995) Immunological recognition of peptides in medicine and biology. CRC Press, Boca Raton, FL, p 297. ISBN ISBN 0849389674Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Cranfield UniversityCranfieldUK

Personalised recommendations