Advertisement

Fruit Breeding pp 225-262 | Cite as

Grape

  • Bruce I. Reisch
  • Christopher L. Owens
  • Peter S. Cousins
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 8)

Abstract

Grapes are grown worldwide, on about 7.9 million ha, and are used to produce wine, raisins, juice, jam, concentrate, and seed oils, as well as fresh fruit. Grapes (Vitis sp.) are members of the Vitaceae. Vitis includes two subgenera, Euvitis (38 chromosomes) and Muscadinia (40 chromosomes), with about 60 species in total. The primary centers of species diversity are North America and East Asia. Scion cultivars are derived chiefly from the European grape, Vitis vinifera, which was domesticated ca. 6,000–10,000 years ago in the region between the Black and Caspian Seas. Grapes spread east into Asia and west into the Mediterranean region. Rootstocks were developed from North American species, including V. riparia, V. rupestris, and V. berlandieri. Scion breeding programs focus on the development of cultivars adapted to biotic and abiotic stress, with high fruit quality, and time of ripening during desirable periods of market demand. Fungal disease resistance is a primary goal of many programs, while cold hardy cultivars help extend the limits of grape cultivation. Rootstock breeding focuses on providing protection against phylloxera and nematodes as well as adaptation to high pH, low pH, and/or water-stressed conditions. Rootstocks should propagate easily by grafting and cuttings. New cultivars are more rapidly adapted in the raisin and table grape sectors than in the wine industry, although there are several notable examples of successful wine grape cultivars developed by breeding. The availability of two published genomic DNA sequences has stimulated numerous projects to further understand the function of the ca. 30,000 grapevine genes. Marker-assisted selection, primarily for disease resistance and seedlessness, is being applied in many breeding programs. Projects that focus on breeding seedless cultivars commonly use embryo rescue techniques, enabling the crossing of two ­seedless parents, to increase the percentage of seedlings that are seedless. Genetic transformation is a routine procedure and is being used for both functional analysis of gene action as well as directly for cultivar improvement (both scions and rootstocks), although transgenic grape cultivars currently are not in commercial production.

Keywords

Grape Breeding Downy Mildew Nematode Phylloxera Powdery Mildew Fruit Quality Raisin Seedless Wine Vitis Vitis vinifera 

References

  1. Adam-Blondon, A.-F., Lahogue-Esnault, F., Bouquet, A., Boursiquot, J.-M. and This, P. (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40, 147–155.Google Scholar
  2. Adam-Blondon, A.-F., Roux, C., Claux, D., Butterlin, G., Merdinoglu, D. et al., (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor. Appl. Genet. 109, 1017–1027.PubMedCrossRefGoogle Scholar
  3. Alleweldt, G. and Dettweiler, E. (1994) The genetic resources of Vitis - world list of grapevine collections. Geilweilerhof, Germany.Google Scholar
  4. Anderson, C., Choisne, N., Adam-Blondon, A.-F. and Dry, I.B. (2011) Positional cloning of disease resistance genes in grapevine. In: A.-F. Adam-Blondon and J. M. Martinez Zapater (Eds.), Genetics, Genomics and Breeding of Grapes. Science Publishers, St. Helier, Jersey, British Isles, pp. 186–210.Google Scholar
  5. Aradhya, M. K., Dangl, G.S., Prins, B.H., Boursiquot, J.-M., Walker, M.A. et al., (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet. Res. 81, 179–182.PubMedCrossRefGoogle Scholar
  6. Arroyo-Garcia, R., Ruiz-Garcia, L., Bolling, L., Ocete, R., Lopez, M.A. et al., (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molec. Ecol. 15, 3707–3714.CrossRefGoogle Scholar
  7. Ashikawa, K. (1972) New grape variety ‘Takao’. Bul. Tokyo-to Agr. Expt. Sta. 7:1–9.Google Scholar
  8. Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M.B., Bouquet, A. et al., (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor. Appl. Genet. 111, 370–377.PubMedCrossRefGoogle Scholar
  9. Barnaud, A., Lacombe, T. and Doligez, A. (2005) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor. Appl. Genet. 112, 708–716.CrossRefGoogle Scholar
  10. Barrett, H.C. and Arisumi, T. (1952) Methods of pollen collection, emasculation and pollination in fruit breeding. Proc. Amer. Soc. Hort. Sci. 59, 259–262.Google Scholar
  11. Barritt, B. H. and Einset, J. (1969) Inheritance of 3 major fruit colors in grapes. J. Amer. Soc. Hort. Sci. 94, 87–89.Google Scholar
  12. Basiouny, F. M. and Himelrick, D. G. (2001) Muscadine Grapes. ASHS Press, Alexandria, Virginia.Google Scholar
  13. Battilana, J., Costantini L., Emanuelli, F., Sevini, F., Segala, C., Moser, S., Velasco, R., Versini, G. and Grando, M.S. (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 118, 653–669.PubMedCrossRefGoogle Scholar
  14. Baumgartner, K. and Rizzo D. M. (2006) Relative resistance of grapevine rootstocks to Armillaria root disease. Amer. J. Enol. Vitic. 57, 408–414.Google Scholar
  15. Baumgartner, K., Bhat, R. and Fujiyoshi P. (2008) Characterizing resistance to infection by the root pathogen Armillaria mellea in tolerant and susceptible grapevine rootstocks. Phytopathology 98, S22.Google Scholar
  16. Bavaresco, L., Presutto, P., and Civardi, S. (2005) VR 043–43: a lime susceptible rootstock. Amer. J. Enol. Vitic. 56, 192–195.Google Scholar
  17. Beakbane, A. B. (1967) The dwarfing effect of a tetraploid sport of M.XIII apple rootstock. Rep. East Malling Res. Sta. for 1966, 96–97.Google Scholar
  18. Bellin, D., Peressotti, E., Merdinoglu, D., Wiedemann-Merdinoglu, S., Adam-Blondon, A.-F. et al., (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor. Appl. Genet. 120, 163–176.PubMedCrossRefGoogle Scholar
  19. Bloodworth, P.J., Nesbitt, W.B. and Barker, K.R. (1980) Resistance to root knot nematodes in Euvitis x Muscadinia hybrids, In: Proceedings of the 3rd International Symposium on Grape Breeding, Davis, CA. pp. 275–292.Google Scholar
  20. Boss, P.K., and Thomas, M.R. (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416, 847–850.PubMedCrossRefGoogle Scholar
  21. Bouquet, A., (1986) Introduction dans l’espéce Vitis vinifera L. d’un caractére de résistance à 1’oidium (Uncinula necator Schw. Burr.) issu de l’espéce Muscadinia rotundifolia (Michx) Small. Vignevini 13, Suppl. 12, 141–146.Google Scholar
  22. Bouquet, A., and Danglot, Y. (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L). Vitis 35, 35–42.Google Scholar
  23. Bouquet, A., Truel, P. and Wagner, R. (1981) Recurrent selection in grapevine breeding (in French, English summary). Agronomie 1, 65–73.CrossRefGoogle Scholar
  24. Bowers, J., Boursiquot, J.-M., This, P., Chu, K., Johansson, H. et al., (1999a) Historical Genetics: the parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. Science 285, 1562–1565.PubMedCrossRefGoogle Scholar
  25. Bowers, J.E., Dangl, G.S. and Meredith, C. P. (1999b) Development and characterization of additional microsatellite DNA markers for grape. Amer. J. Enol. Vitic. 50, 243–246.Google Scholar
  26. Bowers, J.E., and Meredith, C. P. (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics 16, 84–87.PubMedCrossRefGoogle Scholar
  27. Bowers, J.E., and Meredith, C.P. (1996) Genetic similarities among wine grape cultivars revealed by restriction fragment-length polymorphism (RFLP) analysis. J. Amer. Soc. Hort. Sci. 121, 620–624.Google Scholar
  28. Bowers, J.E., Bandman, E. B. and Meredith, C. P. (1993) DNA fingerprint characterization of some wine grape cultivars. Amer. J. Enol. Vitic. 44, 266–273.Google Scholar
  29. Bowers, J.E., Dangl, G.S., Vignani, R. and Meredith, C. P. (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape. Genome 39, 628–633.PubMedCrossRefGoogle Scholar
  30. Boyden, L.E. (2005) Allelism of root-knot nematode resistance and genetics of leaf traits in grape rootstocks. Ph.D. Thesis. Cornell University, Ithaca.Google Scholar
  31. Boyden, L.E. and Cousins, P. (2003) Evaluation of Vitis aestivalis and related taxa as sources of resistance to root-knot nematodes. Acta Horticulturae 623, 283–290.Google Scholar
  32. Bronner, A. and Oliveira, J. (1990) Creation and study of the Pinot noir variety lineage. Vitis (special issue) Proc. 5th Intern. Symp. Grape Breeding, St. Martin/Pfalz, Germany, 12–16 September 1989, pp. 69–80.Google Scholar
  33. Burger, P., Bouquet, A. and Striem, M.J. (2009) Grape breeding. In: S.M. Jain and P.M. Priyadarshan (Eds.). Breeding Plantation Tree Crops: Tropical Species. Springer, pp. 161–189.Google Scholar
  34. Burr, T. J., Bazzi, C., Süle, S., and Otten, L. (1998) Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis. 82, 1288–1297.CrossRefGoogle Scholar
  35. Cabezas, J.A., Cervera, M. T., Ruiz-Garcia, L., Carreno, J. and Martinez-Zapater, J. M. (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49, 1572–1585.PubMedCrossRefGoogle Scholar
  36. Cahoon, G.A. (1998) French hybrid grapes in North America, In: D.C. Ferree (Ed.), A history of fruit varieties. Good Fruit Grower Magazine, Yakima, Washington. pp. 152–168.Google Scholar
  37. Cain, D. W., McKenry, M. V., and Tarailo, R. E. (1984) A new pathotype of root-knot nematode on grape rootstocks. J. Nematol. 16, 207–208.PubMedGoogle Scholar
  38. Camargo, U. A. and Ritschel, P. S. (2008) New table and wine grape cultivars: world scenario with emphasis on Brazil. Acta Horticulturae 785, 89–95.Google Scholar
  39. Campbell, C. (2005) The Botanist and the Vintner: How Wine Was Saved for the World. Algonquin Books of Chapel Hill, Chapel Hill.Google Scholar
  40. Carbonneau, A. (1985) The early selection of grapevine rootstocks for resistance to drought conditions. Amer. J. Enol. Vitic. 36, 195–198.Google Scholar
  41. Cattell, H., and Miller, L. S. (1980) The Wines of the East. Vol. III. Native American Grapes. L& H Photojournalism, Lancaster, PA.Google Scholar
  42. Cervera, M.-T., Cabezas, J. A., Sancha, J. C., Martinez de Toda, F. and Martinez-Zapater, J.M. (1998) Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor. Appl. Genet. 97, 51–59.CrossRefGoogle Scholar
  43. Chisholm, M.G., Guiher, L.A., Vonah, T.M. and Beaumont, J.L. (1994) Comparison of some French-American hybrid wines with White Riesling using Gas Chromatography-Olfactometry. Amer. J. Enol. Vitic. 45, 201–212.Google Scholar
  44. Clark, J. R. (1997) Grape. In: The American Society for Horticultural Sciences, (Ed.). The Brooks and Olmo Register of Fruit and Nut Varieties. ASHS Press, Alexandria, Virginia. pp 248–299.Google Scholar
  45. Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovács, L., Morgante, M., Testolin, R. and Di Gaspero, G. (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet. 10, 89.PubMedCrossRefGoogle Scholar
  46. Conradie, W. J. (1983) Liming and choice of rootstocks as cultural techniques for vines in acid soils. S. Afr. J. Enol. Vitic. 4, 39–44.Google Scholar
  47. Costantini, L., Battilana, J., Lamaj, F., Fanizza, G. and Grando, M. (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biol. 8, 38.PubMedCrossRefGoogle Scholar
  48. Cousins, P. (2007) Tiny grape could do big things. Agric. Res. 55, 23.Google Scholar
  49. Cousins, P., Johnston, D., Switras-Meyer, S. and Meyer, C. (2007) Recessive resistance to the root-knot nematode Meloidogyne incognita derived from the grapevine rootstock 3309 C. J. Nematology 39, 70–71.Google Scholar
  50. Cousins, P. and Lauver, M. (2003) Segregation of resistance to root-knot nematodes in a Vitis vulpina hybrid population. Acta Horticulturae 623, 313–318.Google Scholar
  51. Coutos-Thevenot, P., Poinssot, B., Bonomelli, A., Yean, H., Breda, C. et al., (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J. Exp. Bot. 52, 901–910.PubMedCrossRefGoogle Scholar
  52. Crespan, M. (2003) The parentage of Muscat of Hamburg. Vitis 42, 193–197.Google Scholar
  53. Dalbó, M. A., Ye, G.N., Weeden, N.F., Steinkellner, H., Sefc, K.M. and Reisch, B.I. (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43, 333–340.PubMedCrossRefGoogle Scholar
  54. Dalbó, M. A., Ye, G.N., Weeden, N.F., Wilcox, W.F. and Reisch, B.I. (2001) Marker-assisted selection for powdery mildew resistance in grape. J. Amer. Soc. Hort. Sci. 126, 83–89.Google Scholar
  55. Dangl, G. S., Mendum, M.L., Prins, B.H., Walker, M. A., Meredith, C. P. et al., (2001) Simple sequence repeat analysis of a clonally propagated species: A tool for managing a grape germplasm collection. Genome 44, 432–438.CrossRefGoogle Scholar
  56. Delas, J. J. (1992) Criteria used for rootstock selection in France. In: J.A. Wolpert, M.A. Walker and E. Weber. (Eds.). Proceedings Rootstock Seminar: A Worldwide Perspective, Reno, Nevada, June 24, 1992. The American Society for Enology and Viticulture, Davis, California. pp. 1–14.Google Scholar
  57. Dettweiler, E., Jung, A., Zyprian, E. and Töpfer, R. (2000) Grapevine cultivar Müller-Thurgau and its true to type descent. Vitis 2, 63–65.Google Scholar
  58. Dhekney, S. A., Li, Z.T., Zimmerman, T.W. and Gray, D.J. (2009) Factors influencing genetic transformation and plant regeneration of Vitis. Amer. J. Enol. Vitic. 60, 285–292.Google Scholar
  59. Di Gaspero, G. and Cattonaro, F. (2010) Application of genomics to grapevine improvement. Aust. J. Grape Wine Res. 16 (supplement S1), 122–130.Google Scholar
  60. Di Gaspero, G. and Cipriani, G. (2002) Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.). Theor. Appl. Genet. 106, 163–172.PubMedGoogle Scholar
  61. Di Gaspero, G. and Cipriani, G. (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Molec. Genet. Genomics 269, 612–623.Google Scholar
  62. Doligez, A., Audiot, E., Baumes, R. and This, P. (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Molec. Breeding 18, 109–125.CrossRefGoogle Scholar
  63. Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S. et al., (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet. 105, 780–795.PubMedCrossRefGoogle Scholar
  64. Donald, T. M., Pellerone, F., Adam-Blondon, A.-F., Bouquet, A., Thomas, M.R. et al., (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor. Appl. Genet. 104, 610–618.PubMedCrossRefGoogle Scholar
  65. Doucleff, M., Jin, Y., Gao, F., Riaz, S., Krivanek, A.F. et al., (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor. Appl. Genet. 109, 1178–1187.PubMedCrossRefGoogle Scholar
  66. Dutt, M., Li, Z.T., Dhekney, S.A. and Gray, D.J. (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci. 175, 423–430.CrossRefGoogle Scholar
  67. Eibach, R. and Töpfer, R. (2010) Progress in grapevine breeding. In: 10th International Conference on Grapevine Breeding and Genetics, Geneva, New York. New York State Agricultural Experiment Station. (abstract).Google Scholar
  68. Eibach, R., Diehl, H. and Alleweldt, G. (1989) Untersuchungen zur Vererbung von Resistenzeigenschaften bei Reben gegen Oidium tuckeri, Plasmopara viticola und Botrytis cinerea. Vitis 28, 209–228.Google Scholar
  69. Einset, J. and Lamb, B. (1951) Chimeral sports of grapes. J. Hered. 42, 158–162.Google Scholar
  70. Einset, J. and Pratt, C. (1954) Giant sports of grapes. Proc. Amer. Soc. Hort. Sci. 63, 251–256.Google Scholar
  71. Ellis, R.H., Hong, T.D. and Roberts, E.H. (1983) A note on the development of a practical procedure for promoting the germination of dormant seed of grape (Vitis spp.). Vitis 22, 211–219.Google Scholar
  72. Elshire, R., Glaubitz, J., Sun, Q., Poland, J., Kawamoto, K., Buckler, E. and Mitchell S. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379. doi:10.1371/journal.pone.0019379.PubMedCrossRefGoogle Scholar
  73. Emanuelli, F., Battilana, J., Costantini, L., Le Cunff, L., Boursiquot, J.M., This, P. and Grando, M.S. (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol. 10, 241.PubMedCrossRefGoogle Scholar
  74. Ergul, A., Kazan, K., Aras, S., Cevik, V., Celik, H. et al., (2006) AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome 49, 467–475.PubMedCrossRefGoogle Scholar
  75. Ewart, A.J.W. (1988) Sources of variation: Vineyard to wine judging. In: R. Smart, R. Thornton, S. Rodriguez and J. Young (Eds). Proc. 2nd Int. Cool Climate Viticulture and Oenology Symposium, 11–15 January 1988; New Zealand Society for Viticulture and Oenology, Auckland, New Zealand, pp. 209–210.Google Scholar
  76. Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R. and Grando, M.S. (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor. Appl. Genet. 111, 658–664.PubMedCrossRefGoogle Scholar
  77. Fatahi, R., Ebadi, A., Bassil, N., Mehlenbacher, S. A. and Zamani, Z. (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42, 185–192.Google Scholar
  78. Fernandez, L., Romieu, C., Moing, A., Bouquet, A., Maucourt, M. et al., (2006) The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Phys. 140, 537–547.Google Scholar
  79. Fernandez, L., Torregrosa, L., Segura, V., Bouquet, A., and Martinez-Zapater, J.M. (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J. 61, 545–557.PubMedCrossRefGoogle Scholar
  80. Firoozabady, E. and Olmo, H. P. (1982) The heritability of resistance to root-knot nematode (Meloidogyne incognita acrita CHIT.) in Vitis vinifera x V. rotundifolia hybrid derivatives. Vitis 21, 136–144.Google Scholar
  81. Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K.J. et al., (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor. Appl. Genet. 108, 501–515.PubMedCrossRefGoogle Scholar
  82. Flemion, F. (1937) After-ripening at 5°C favors germination of grape seeds. Contrib. Boyce Thompson Inst. 9, 7–15.Google Scholar
  83. Fournier-Level, A., Le Cunff, L., Gomez, C., Doligez, A., Ageorges, A. et al., (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: A quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183, 1127–1139.PubMedCrossRefGoogle Scholar
  84. Fráguas, J. C. (1999) Tolerância de porta-enxertos de vidiera ao alumínio do solo. Pesq. Agropec. Bras. 34, 1193–1200.CrossRefGoogle Scholar
  85. Franks, T., Botta, R. and Thomas, M.R. (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor. Appl. Genet. 104, 192–199.PubMedCrossRefGoogle Scholar
  86. Fuchs, M., Cambra, M., Capote, N., Jelkmann, W., Kundu, J. et al., (2007) Safety assessment of transgenic plums and grapevines expressing viral coat protein genes: New insights into real environmental impact of perennial plants engineered for virus resistance. J. Plant Path. 89, 5–12.Google Scholar
  87. Garris, A., Clark, L., Owens, C., McKay, S., Luby, J. et al., (2009) Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J. Amer. Soc. Hort. Sci. 134, 261–272.Google Scholar
  88. Golino, D. A. (1993) Potential interactions between rootstocks and grapevine latent viruses. Amer. J. Enol. Vitic. 44, 148–152.Google Scholar
  89. Goto-Yamamoto, N., Mouri, H., Azumi, M., and Edwards, K.J. (2006) Development of grape microsatellite markers and microsatellite analysis including oriental cultivars. Amer. J. Enol. Vitic. 57, 105–108.Google Scholar
  90. Grando, M. S., Bellin, D., Edwards, K. J., Pozzi, C., Stefanini, M. et al., (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor. Appl. Genet. 106, 1213–1224.PubMedGoogle Scholar
  91. Grassi, F., Labra, M., Imazio, S., Spada, A., Sgorbati, S. et al., (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 107, 1315–1320.PubMedCrossRefGoogle Scholar
  92. Guillen, P., Guis, M., Martinez-Reina, G., Colrat, S., Dalmayrac, S. et al., (1998) A novel NADPH-dependent aldehyde reductase gene from Vigna radiata confers resistance to the grapevine fungal toxin eutypine. The Plant J. 16, 335–343.CrossRefGoogle Scholar
  93. Hardy, P.J. (1970) Changes in volatiles of muscat grapes during ripening. Phytochem. 9, 709–715.CrossRefGoogle Scholar
  94. Harmon, F.N. and Weinberger, J.H. (1959) Effects of storage and stratification on germination of vinifera grape seeds. Proc. Amer. Soc. Hort. Sci. 73, 147–150.Google Scholar
  95. Hébert, D., Kikkert, J. R., Smith, F. D. and Reisch, B. I. (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep. 13, 405–409.Google Scholar
  96. Hedrick, U. P. and Anthony, R. D. (1915) Inheritance of certain characters of grapes. New York State Agricultural College Technical Bulletin No. 45, 3–19.Google Scholar
  97. Hirabayashi, T., Kozaki, I. and Akihama, T. (1976) In vitro differentiation of shoots from anther callus in Vitis. HortScience 11, 511–512.Google Scholar
  98. Hocquigny, S., Pelsey, F., Dumas, V., Kindt, S., Heloir, M.-C. et al., (2004) Diversification within grapevine cultivars goes through chimeric states. Genome 47, 579–589.PubMedCrossRefGoogle Scholar
  99. Hvarleva, T., Rusanov, K., Lefort, F., Tsvetkov, I., Atanassov A., et al., (2004) Genotyping of Bulgarian Vitis vinifera L. cultivars by microsatellite analysis. Vitis 43, 27–34.Google Scholar
  100. Hwang, C. F., Xu, K. N., Hu, R., Zhou, R., Riaz, S. et al., (2010) Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theor. Appl. Genet. 121, 789–799.PubMedCrossRefGoogle Scholar
  101. Iocco, P., Franks, T. and Thomas, M. R. (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res. 10, 105–112.PubMedCrossRefGoogle Scholar
  102. Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C. et al., (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.PubMedCrossRefGoogle Scholar
  103. Kikkert, J. R., Hébert-Soule, D., Wallace, P. G., Striem, M. J. and Reisch, B. I. (1996) Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15, 311–316.CrossRefGoogle Scholar
  104. Kikkert, J.R., Striem, M.J., Vidal, J.R. Wallace, P.G., Barnard, J. and Reisch, B.I. (2005) Long-term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (Vitis sp.) genotypes. In Vitro Cell. Dev. Biol. - Plant 41, 232–239.Google Scholar
  105. Kobayashi, S., Goto-Yamamoto, N. and Hirochika, H. (2004) Retrotransposon-induced mutations in grape skin color. Science 304, 982.PubMedCrossRefGoogle Scholar
  106. Krivanek, A. F., Famula, T.R., Tenscher A., and Walker, M.A. (2005) Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris x Vitis arizonica population. Theor. Appl. Genet. 111, 110–119.PubMedCrossRefGoogle Scholar
  107. Krivanek, A. F., Riaz, S. and Walker, M. A. (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor. Appl. Genet. 112, 1125–1131.PubMedCrossRefGoogle Scholar
  108. Krul, W. R., and Worley, J. F. (1977) Formation of adventitious embryos in callus cultures of ‘Seyval’, a French hybrid grape. J. Amer. Soc. Hort. Sci. 102, 360–363.Google Scholar
  109. Labra, M., Imazio, S., Grassi, F., Rossoni, M., Citterio, S. et al., (2003) Molecular approach to assess the origin of cv. Marzemino. Vitis 42, 137–140.Google Scholar
  110. Labra, M., Winfield, M., Ghiani, A., Grassi, F., Sala, F. et al., (2001) Genetic studies on Trebbiano and morphologically related varieties by SSR and AFLP markers. Vitis 40, 187–190.Google Scholar
  111. Ladoukakis, E. D., Lefort, F., Sotiri, P., Bacu, A., Kongjika E., et al., (2005) Genetic characterization of Albanian grapevine cultivars by microsatellite markers. Journal International Des Sciences De La Vigne Et Du Vin 39, 109–119.Google Scholar
  112. Lahogue, F., This, P. and Bouquet, A. (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor. Appl. Genet. 97, 950–959.CrossRefGoogle Scholar
  113. Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.-P., Dessup, M., Dessup, T., Ortigosa, P., Parra, P., Roux, C., Santoni, S., Vares, D., Peros, J.-P., Boursiquot, J.-M. and This, P. (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor. Appl. Genet. 122, 1233–1245.PubMedCrossRefGoogle Scholar
  114. Lee, L. S. (1988) Citrus polyploidy—origins and potential for cultivar improvement. Aust. J. Agric. Res. 39, 735–747.CrossRefGoogle Scholar
  115. Legrand, V., Dalmayrac, S., Latche, A., Pech, J.-C., Bouzayen, M. et al., (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci. 164, 809–814.CrossRefGoogle Scholar
  116. Levadoux, L. (1956) Les populations sauvages et cultivees de Vitis vinifera L. Ann. Amelior. Plantes 6, 59–118.Google Scholar
  117. Li, Z. J. T., Dhekney, S. A., Dutt, M. and Gray, D. J. (2008) Improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue and Organ Culture 93, 311–321.CrossRefGoogle Scholar
  118. Lider, L. A. (1954) Inheritance of resistance to a root-knot nematode (Meloidogyne incognita var. acrita Chitwood) in Vitis spp. Proc. Helminthol. Soc. Wash. 21, 53–60.Google Scholar
  119. Lider, L. A., Olmo, H. P. and Goheen, A. C. (1988) Hybrid grapevine rootstock named ‘VR O43-43’. United States Plant Patent 6, 319.Google Scholar
  120. Lijavetzky, D., Ruiz-Garcia, L., Cabezas, J. A., De Andres, M. T., Bravo, G. et al., (2006) Molecular genetics of berry colour variation in table grape. Molec. Genet. Genomics 276, 427–435.CrossRefGoogle Scholar
  121. Lodhi, M. A., Daly, M. J., Ye, G. N., Weeden, N. F. and Reisch, B. I. (1995) A molecular marker based linkage map of Vitis. Genome 38, 786–794.PubMedCrossRefGoogle Scholar
  122. Lopes, M. S., dos Santos, M. R., Dias, J. E. E., Mendonca, D. and da Camara Machado, A. (2006) Discrimination of Portuguese grapevines based on microsatellite markers. J. Biotech. 127, 34–44.CrossRefGoogle Scholar
  123. Lopes, M. S., Sefc, K. M., Eiras Dias, E., Steinkellner, H., Laimer da Camara Machado, M. et al., (1999) The use of microsatellites for germplasm management in a Portuguese germplasm grapevine collection. Theor. Appl. Genet. 99, 733–739.CrossRefGoogle Scholar
  124. Lowe, K. M., and Walker, M. A. (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) x Riparia Gloire (Vitis riparia). Theor. Appl. Genet. 112, 1582–1592.PubMedCrossRefGoogle Scholar
  125. Madero, E., Boubals, D. and Truel, P. (1986) Transmission hereditaire des principaux caracteres des cepages Cabernet Franc, Cabernet Sauvignon et Merlot (V. vinifera L.). Vignevini 13, Suppl. 12, 209–219.Google Scholar
  126. Maletic, E., Pejic, I., Kontic, J. K., Piljac, J., Dangl, G. S. et al., (2004) Zinfandel, Dobricic, and Plavac mali: The genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Amer. J. Enol. Vitic. 55, 174–180.Google Scholar
  127. Mandl, K., Santiago, J. L., Hack, R., Fardossi, A. and Regner, F. (2006) A genetic map of Welschriesling x Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica 149, 133–144.CrossRefGoogle Scholar
  128. Martin, J. P., Borrego, J., Cabello, F. and Ortiz, J. M. (2003) Characterization of Spanish grapevine cultivar diversity using sequence-tagged microsatellite markers. Genome 46, 10–18.PubMedCrossRefGoogle Scholar
  129. McGovern, P. E. (2003) Ancient wine: the search for the origins of viticulture. Princeton University Press, Princeton.Google Scholar
  130. McGovern, P. E. and Michel, R. H. (1995) The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient Near East, In: P. E. McGovern, S. J. Fleming and S. H. Katz (Eds.) The Origins and Ancient History of Wine. Gordon and Breach, Amsterdam. pp. 57–67.Google Scholar
  131. McLeRoy, S. S. and Renfro, R. E. Jr., (2004) Grape Man of Texas. Eaking Press, Austin, TX.Google Scholar
  132. Mejia, N., Soto, B., Guerrero, M., Casanueva, X., Houel, C. et al., (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. 11, 57.PubMedCrossRefGoogle Scholar
  133. Merdinoglu, D., Butterlin, G., Bevilacqua, L., Chiquet, V., Adam-Blondon, A.-F. et al., (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Molec. Breeding 15, 349–366.CrossRefGoogle Scholar
  134. Meredith, C. P, Lider, L. A., Raski, D. J. and Ferrari, N. L. (1982) Inheritance of tolerance to Xiphinema index in Vitis species. Amer. J. Enol. Vitic. 33, 154–158.Google Scholar
  135. Meredith, C. P., Bowers, J. E., Riaz, S., Handley, V., Bandman, E. B. et al., (1999) The identity and parentage of the variety known in California as Petite Syrah. Amer. J. Enol. Vitic. 50, 236–242.Google Scholar
  136. Moreira, F. M., Madini, A., Marino, R., Zulini, L., Stefanini, M. et al., (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet. Genomes 7, 153–167.Google Scholar
  137. Morinaga, K. (2001) Grape Production in Japan. In: M.K. Papademetriou and F.J. Dent (Eds.), Grape Production in the Asia-Pacific Region. Food and Agriculture Office of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand. pp. 38–69.Google Scholar
  138. Mortensen, J. A. (1968) The inheritance of resistance to Pierce’s disease in Vitis. J. Amer. Soc. Hort. Sci. 92, 331–337.Google Scholar
  139. Motosugi, H., Naruo, T. and Kataoka, D. (1999) The growth of diploid and tetraploid grape rootstocks and ‘Kyoho’ grape grafted on them. J. Japan. Hort. Sci. 68 (Suppl. 2), 112.Google Scholar
  140. Motosugi, H., Okudo, K., Kataoka, D. and Naruo, T. (2002a) Comparison of growth characteristics between diploid and colchicines-induced tetraploid grape rootstocks. J. Japan. Hort. Sci. 71, 335–341.CrossRefGoogle Scholar
  141. Motosugi, H., Naruo, T., Komazaki, S., and Yamada, M. (2002b) Resistance of autotetraploids of grape rootstock cultivars to phylloxera (Daktulosphaira vitifoliae Fitch). Vitis 41, 103–106.Google Scholar
  142. Mullins, M. G., and Srinivasan, C. (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cultivar Cabernet Sauvignon) by apomixis in vitro. J. Exp. Bot.27, 1022–1030.Google Scholar
  143. Mullins, M. G., Bouquet, A. and Williams, L. E. (1992) Biology of the Grapevine. Cambridge University Press, Cambridge.Google Scholar
  144. Munson, T. (1909) Foundations of American Grape Culture. T.V. Munson & Son, Denison, Texas.Google Scholar
  145. Myles, S., Boyko, A.R., Owens, C.L., Brown, P.J., Grassi, F., Aradhya, M.K., Prins, B., Reynolds, A., Chia, J.-M., Ware, D., Bustamante, C.D. and Buckler, E.S. (2011) Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. (USA) 108, 3530–3535.CrossRefGoogle Scholar
  146. Myles, S., Chia, J.-M., Hurwitz, B., Simon, C., Zhong, G. Y., Buckler, E.S. and Ware, D. (2010) Rapid Genomic Characterization of the Genus Vitis. PLoS ONE 5, e8219.PubMedCrossRefGoogle Scholar
  147. Neal, J. C. (1889) The root-knot disease of peach, orange, and other plants in Florida. U.S. Department of Agriculture, Division of Entomology, Bulletin 20, 1–31.Google Scholar
  148. Negrul, A. M. (1938) Evolucija kuljturnyx from vinograda. Doklady Akademii nauk SSSR 8, 585–588.Google Scholar
  149. Nicol, J.M., Stirling, G.R, Rose, B.J., May, P. and Heeswijck, R.V. (1999) Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Austr. J. Grape Wine Res. 5, 109–127.CrossRefGoogle Scholar
  150. Office International de la Vigne et du Vin. (2006) Situation Report for the World Vitivinicultural Sector in 2005. Paris.Google Scholar
  151. Olmo, H.P. (1942) Storage of grape pollen. Proc. Amer. Soc. Hort. Sci. 41, 219–224.Google Scholar
  152. Olmo, H.P. (1971) Vinifera rotundifolia hybrids as wine grapes. Amer. J. Enol. Vitic. 22, 87–91.Google Scholar
  153. Olmo, H.P. (1995) The origin and domestication of the Vinifera grape, In: P. E. McGovern (Ed.). The origins and ancient history of wine. Gordon and Breach, Amsterdam. pp. 31–43.Google Scholar
  154. Ong, P.K.C. and Acree, T.E. (1999) Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis Sonn.) fruit. J. Agric. Food Chem. 47, 665–670.CrossRefGoogle Scholar
  155. Owens, C. L. (2011) Linkage disequilibrium and prospects for association mapping in Vitis. In: A.-F. Adam-Blondon and J.M. Martinez Zapater (Eds.). Genetics, Genomics and Breeding of Grapes. Scientific Publishers, St. Helier, Jersey, British Isles. pp. 93–110.Google Scholar
  156. Owens, C.L. (2008) Grapes. In: J.F. Hancock (Ed.), Temperate Fruit Crop Breeding. Springer, pp. 197–233.Google Scholar
  157. Paul, H. W. (1996) Science, vine, and wine in modern France. Cambridge University Press, Cambridge.Google Scholar
  158. Pauquet, J., Bouquet, A., This, P. and Adam-Blondon, A.-F. (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor. Appl. Genet. 103, 1201–1210.CrossRefGoogle Scholar
  159. Pelsy, F. (2010) Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104, 331–340.PubMedCrossRefGoogle Scholar
  160. Perl, A. and Eshdat, Y. (1998) DNA transfer and gene expression in transgenic grapes. Biotech. Genet. Engineering Rev. 15, 365–386.Google Scholar
  161. Perl, A., Saad, S., Sahar, N. and Holland, D. (1995) Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars -- a synergistic effect of auxins and the role of abscisic acid. Plant Sci. 104, 193–200.CrossRefGoogle Scholar
  162. Perrin, M., Gertz, C. and Masson, J. E. (2004) High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci. 167, 1343–1349.CrossRefGoogle Scholar
  163. Perrin, M., Martin, D., Joly, D., Demangeat, G., This, P. et al., (2001) Medium-dependent response of grapevine somatic embryogenic cells. Plant Sci. 161, 107–116.CrossRefGoogle Scholar
  164. Pezzuto, J.M. (2008) Grapes and human health: A perspective. J. Agric. Food Chem. 56, 6777–6784.PubMedCrossRefGoogle Scholar
  165. Pinkerton, J. N, Vasconcelos, M. C., Sampaio, T. L. and Shaffer, R. G. (2005) Reaction of grape rootstocks to ring nematode Mesocriconema xenoplax. Amer. J. Enol. Vitic. 56, 377–385.Google Scholar
  166. Polášková, P., Herszage, J. and Ebeler, S.E. (2008) Wine flavor: chemistry in a glass. Chem. Soc. Rev. 37, 2478–2489.PubMedCrossRefGoogle Scholar
  167. Pouget, R. and Ottenwalter, M. (1984) Recherche de nouveaux porte-greffes adaptés aux sols acides. Prog. Agric. Vitic. 101, 73–75.Google Scholar
  168. Pratt, C. (1971) Reproductive anatomy in cultivated grapes--a review. Amer. J. Enol. Vitic. 22, 92–109.Google Scholar
  169. Prescott, J. A. (1965) The climatology of the vine: The cool limits of cultivation. Trans. Roy. Soc. South Aust. 89, 5–23.Google Scholar
  170. Qiu, B.X., Sleper, D.A. and Arelli, A.P.R. (1997) Genetic and molecular characterization of resistance to Heterodera glycines race isolates 1, 3, and 5 in Peking. Euphytica 96, 225–231.CrossRefGoogle Scholar
  171. Rajasekaran, K. and Mullins, M.G. (1979) Embryos and plantlets from cultured anthers of hybrid grapevines. J. Exp. Bot.30, 399–407.Google Scholar
  172. Raman, H., Moroni, J. S., Sato, K., Read, B. J. and Scott, B. J. (2002) Identification of AFLP and microsatellite markers linked with an aluminum tolerance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105, 458–464.PubMedCrossRefGoogle Scholar
  173. Raman, H., Zhang, K., Cakir, M., Appels, R., Garvin, D.F., Maron, L.G., Kochian, L.V., Moroni, J.S., Raman, R., Imtiaz, M., Drake-Brockman, F., Waters, I., Martin, P., Sasaki, T., Yamamoto, Y., Matsumoto, H., Hebb, D.M., Delhaize, E. and Ryan, P.R. (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791.PubMedCrossRefGoogle Scholar
  174. Ramming, D. W., Emershad, R. L. and Tarailo, R. (2000) A stenospermocarpic, seedless Vitis vinifera x Vitis rotundifolia hybrid developed by embryo rescue. HortScience 35, 732–734.Google Scholar
  175. Ramming, D.W., Gabler, F., Smilanick, J., Cadle-Davidson, M., Barba, P., Mahanil, S. and Cadle-Davidson, L. (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathol. 101, 502–508.CrossRefGoogle Scholar
  176. Regner, F., Stadlbauer, A., Eisenheld, C. and Kaserer, H. (2000) Genetic relationships among Pinots and related cultivars. Amer. J. Enol. Vitic. 51, 7–14.Google Scholar
  177. Reisch, B.I. and Pratt, C. (1996) Grapes. In: J. Janick and J.N. Moore (Eds.), Fruit Breeding. Volume II. Vine and Small Fruits. John Wiley and Sons, New York. pp. 297–359.Google Scholar
  178. Riaz, S., Dangl, G. S., Edwards, K. J. and Meredith, C. P. (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor. Appl. Genet. 108, 864–872.PubMedCrossRefGoogle Scholar
  179. Riaz, S., Garrison, K. E., Dangl, G. S., Boursiquot, J.-M. and Meredith, C. P. (2002) Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J. Amer. Soc. Hort. Sci. 127, 508–514.Google Scholar
  180. Riaz, S., Krivanek, A. F., Xu, K. and Walker, M. A. (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Theor. Appl. Genet. 113, 1317–1329.PubMedCrossRefGoogle Scholar
  181. Riaz, S., Tenscher, A. C., Ramming, D. W. and Walker, M. A. (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor. Appl. Genet. 122, 1059–1073.PubMedCrossRefGoogle Scholar
  182. Riaz, S., Tenscher, A. C., Rubin, J., Graziani, R., Pao, S. S. et al., (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor. Appl. Genet. 117, 671–681.PubMedCrossRefGoogle Scholar
  183. Riaz, S., Tenscher, A.C., Graziani, R., Krivanek A.F. and Walker, M.A. (2009) Using marker assisted selection to breed for Pierce’s disease resistance in grapevine. Amer. J. Enol. Vitic. 60, 199–206.Google Scholar
  184. Rives, M. (1965) The germination of grape seeds. l. Preliminary experiments (in French, English summary). Ann. Amélior. Plantes 15, 79–91.Google Scholar
  185. Rosenfield, C. L., Samuelian, S., Vidal, J. R. and Reisch, B. I. (2010) Transgenic disease resistance in Vitis vinifera: Potential use and screening of antimicrobial peptides. Amer. J. Enol. Vitic. 61, 348–357.Google Scholar
  186. Rossoni, M., Labra, M., Imazio, S., Grassi, F., Scienza, A. et al., (2003) Genetic relationships among grapevine cultivars grown in Oltrepo Pavese (Italy). Vitis 42, 31–34.Google Scholar
  187. Rowhani,, A., Uyemoto, J. K., Golino, D. A. and Martelli, G. P. (2005) Pathogen testing and certification of Vitis and Prunus species. Annu. Rev. Phytopathol. 2005. 43, 6.1–6.18.Google Scholar
  188. Sauer, W. and Antcliff, A. J. (1969) Polyploid mutants of grapes. HortScience 4, 226–227.Google Scholar
  189. Scott, D.H. and Ink, D.P. (1950) Grape seed germination experiments. Proc. Amer. Soc. Hort. Sci. 56, 134–139.Google Scholar
  190. Scott, K. D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E. M. et al., (2000) Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100, 723–726.CrossRefGoogle Scholar
  191. Sefc, K. M., Lopes, M. S., Lefort, F., Botta, R., Roubelakis-Angelakis, K. A. et al., (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100, 498–505.CrossRefGoogle Scholar
  192. Shure, K.B. and Acree, T.E. (1994) Changes in odor-active compounds in Vitis labruscana Cv. Concord during growth and development. J. Agric. Food Chem. 42, 350–353.Google Scholar
  193. Snyder, E. and Harmon, F. N. (1939) Grape progenies of self-pollinated vinifera varieties. Proc. Amer. Soc. Hort. Sci. 37, 625–626.Google Scholar
  194. Snyder, E. and Harmon, F. N. (1952) Grape breeding summary 1923–1951. Proc. Amer. Soc. Hort. Sci. 60, 243–246.Google Scholar
  195. Spiegel-Roy, P., Shulman, Y., Baron, I. and Ashbel, E. (1987) Effect of cyanamide in overcoming grape seed dormancy. HortScience 22, 208–210.Google Scholar
  196. Stobbs. L. W., Potter, J. W., Killins, R. and Van Schagen, J. G. (1988) Influence of grapevine understock in infection of De Chaunac scion by tomato ringspot virus. Can. J. Plant Pathol. 10, 228–231.CrossRefGoogle Scholar
  197. This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R. et al., (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448–1458.PubMedCrossRefGoogle Scholar
  198. This, P., Lacombe, T. and Thomas, M. R. (2006) Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511–519.PubMedCrossRefGoogle Scholar
  199. This, P., Lacombe, T., Cadle-Davidson, M. and Owens, C. L. (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor. Appl. Genet. 114, 723–730.PubMedCrossRefGoogle Scholar
  200. Thomas, M. R. and Scott, N. S. (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as Sequence-Tagged Sites (STSs). Theor. Appl. Genet. 86, 985–990.Google Scholar
  201. Thomas, M. R., Cain, P. and Scott, N. S. (1994) DNA typing of grapevines - a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Molec. Biol. 25, 939–949.CrossRefGoogle Scholar
  202. Thomas, M. R., Matsumoto, S., Cain, P. and Scott, N. S. (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor. Appl. Genet. 86, 173–180.Google Scholar
  203. Thompson, M. M. and Olmo, H. P. (1963) Cytohistological studies of cytochimeric and tetraploid grapes. Amer. J. Bot. 50, 901–906.CrossRefGoogle Scholar
  204. Torregrosa, L. (1998) A simple and efficient method to obtain stable embryogenic cultures from anthers of Vitis vinifera L. Vitis 37, 91–92.Google Scholar
  205. Valat, L., Fuchs, M. and Burrus, M. (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation. Plant Sci. 170, 739–747.CrossRefGoogle Scholar
  206. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A. et al., (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.PubMedCrossRefGoogle Scholar
  207. Viala, P. and Ravaz, L. (1903) American Vines. 2nd ed. (Translated from French by R. Dubois and E.H. Twight). Freygang-Leary, San Francisco.Google Scholar
  208. Vidal, J. R., Kikkert, J. R., Malnoy, M. A., Wallace, P. G., Barnard, J. and Reisch, B.I. (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res. 15, 69–82.PubMedCrossRefGoogle Scholar
  209. Vidal, J. R., Kikkert, J. R., Wallace, P. G. and Reisch, B.I. (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep. 22, 252–260.PubMedCrossRefGoogle Scholar
  210. Vigne, E., Komar, V. and Fuchs, M. (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res. 13, 165–179.PubMedCrossRefGoogle Scholar
  211. Vouillamoz, J. F. and Grando, M. S. (2006) Genealogy of wine grape cultivars: ‘Pinot’ is related to ‘Syrah’. Heredity 97, 102–110.PubMedCrossRefGoogle Scholar
  212. Waffo-Téguo, P., Hawthorne, M.E., Cuendet, M., Mérillon, J.-M., Kinghorn, A.D., Pezzuto, J.M. and Mehta, R.G. (2001) Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutrition and Cancer 40, 173–179.PubMedCrossRefGoogle Scholar
  213. Wagner, R. (1967) Study of some segregation in progenies of Chasselas, Muscat Ottonel and small-berried Muscat (in French). Vitis 6, 353–363.Google Scholar
  214. Walker, A.R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R. et al., (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49, 772–785.PubMedCrossRefGoogle Scholar
  215. Walker, G. E. and Stirling, G. R. (2008) Plant-parasitic nematodes in Australian viticulture: key pests, current management practices and opportunities for future improvements. Australasian Plant Pathol. 37, 268–278.CrossRefGoogle Scholar
  216. Walker, M. A. (1992) Future directions for rootstock breeding. In: J.A. Wolpert, M.A. Walker and E. Weber (Eds.). Proceedings Rootstock Seminar: A Worldwide Perspective, Reno, Nevada, June 24, 1992. The American Society for Enology and Viticulture, Davis, California. pp 60–66.Google Scholar
  217. Walker, M. A., Ferris, H. and Eyre, M. (1994a) Resistance in Vitis and Muscadinia to Meloidogyne incognita. Plant Dis. 78, 1055–1038.CrossRefGoogle Scholar
  218. Walker, M. A., Wolpert, J. A. and Weber, E. (1994b) Viticultural characteristics of VR hybrid rootstocks in a vineyard site infected with grapevine fanleaf virus. Vitis 33, 19–23.Google Scholar
  219. Walker, M. A., Lider, L. A., Goheen, A. C., and Olmo, H. P. (1991) VR O39-16 grape rootstock. HortScience 26, 1224–1225.Google Scholar
  220. Walker, M.A, Jin, Y., Min, B.E. and Hajdu, E. (1998) Development of resistant rootstocks to control Xiphinema index and fanleaf degeneration. Acta Horticulturae 473, 113–120.Google Scholar
  221. Walters, S.A., Wehner, T.C., and Barker, K.R. (1997) A single recessive gene for resistance to the root-knot nematode (Meloidogyne javanica) in Cucumis sativus var hardwickii. J. Hered. 88, 66–69.Google Scholar
  222. Wang, M. and Goldman, I.L. (1996) Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J. Hered. 87, 119–123.Google Scholar
  223. Wang, Q., Mawassi, M., Sahar, N., Li, P., Violeta, C.-T., Gafny, R., Sela, I., Tanne, E. and Perl, A. (2004) Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulation-vitrification. Plant Cell, Tissue and Organ Culture 77, 267–275.CrossRefGoogle Scholar
  224. Weinberger, J. H. and Harmon, F. N. (1966) Harmony, a new nematode and phylloxera resistant rootstock for vinifera grape. Fruit Var. Hort. Dig. 20, 63–65.Google Scholar
  225. Wellington, R. (1939) The Ontario grape and its seedlings as parents. Proc. Amer. Soc. Hort. Sci. 37, 630–634.Google Scholar
  226. Welter, L. J., Gokturk-Baydar, N., Akkurt, M., Maul, E., Eibach, R. et al., (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molec. Breeding 20, 359–374.CrossRefGoogle Scholar
  227. Wen, J. (2007) Vitaceae. In: K. Kubitzki (Ed.). The Families and Genera of Vascular Plants. Volume IX: Flowering Plants-Eudicots. Springer-Verlag, Berlin. pp. 467–479.Google Scholar
  228. Winkler, A.J. (1949) Grapes and wine. Econ. Bot. 3, 46–70.CrossRefGoogle Scholar
  229. Xu, K., Riaz, S., Roncoroni, N. C., Jin, Y., Hu, R. et al., (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor. Appl. Genet. 116, 305–311.PubMedCrossRefGoogle Scholar
  230. Xue, B., Ling, K.-S., Reid, C. L., Krastanova, S., Sekiya, M. et al., (1999) Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol.--Plant 35, 226–231.Google Scholar
  231. Yamamoto, T., Iketani, H., Ieki, H., Nishizawa, Y., Notsuka, K. et al., (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19, 639–646.CrossRefGoogle Scholar
  232. Ye, G. N., Soylemezoglu, G., Weeden, N. F., Lamboy, W. F., Pool, R. M. et al., (1998) Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprinting. Vitis 37, 33–38.Google Scholar
  233. Zhang, J. K., Hausmann, L., Eibach, R., Welter, L. J., Töpfer, R. et al., (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ x ‘Riesling’) x rootstock cultivar ‘Börner’ (Vitis riparia x Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor. Appl. Genet. 119, 1039–1051.PubMedCrossRefGoogle Scholar
  234. Zohary, D. and Hopf, M. (2000) Domestication of Plants in the Old World. Oxford University Press, London.Google Scholar
  235. Zohary, D. and Spiegel-Roy, P. (1975) Beginnings of fruit growing in the old world. Science 187, 319–327.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bruce I. Reisch
    • 1
  • Christopher L. Owens
    • 2
  • Peter S. Cousins
    • 2
  1. 1.Departments of Horticulture and Plant BreedingN.Y.S. Agricultural Experiment Station, Cornell UniversityGenevaUSA
  2. 2.USDA ARS, Grape Genetics Research Unit, NYS Agricultural Experiment StationGenevaUSA

Personalised recommendations