Fruit Breeding pp 571-621 | Cite as


  • Bruce L. ToppEmail author
  • Dougal M. Russell
  • Michael Neumüller
  • Marco A. Dalbó
  • Weisheng Liu
Part of the Handbook of Plant Breeding book series (HBPB, volume 8)


There are 19–40 species of plum, depending on taxonomist, that have originated in Europe, Asia and America. From this great diversity only two species, the hexaploid European plum (Prunus domestica) and the diploid Japanese plum (P. salicina and hybrids), are of worldwide commercial significance. The European plums were cultivated in Roman times and stone remnants indicate human use 6,000 years ago. Their origin is uncertain but may have involved P. cerasifera and possibly P. spinosa as ancestors. The rich diversity and history of European plums is reflected in the many pomological groups including Prunes, Gages, Mirabelles, Damsons, Bullaces and St Juliens. Today, European plum breeding concentrates on selection for resistance to Sharka disease caused by the Plum Pox Virus which limits production in many countries. Resistant cultivars have been developed using both conventional and genetic transformation techniques. Japanese plums originated in China but were introduced to the west, from Japan, only 150 years ago. Luther Burbank hybridised them with other plum species with the result that most modern cultivars are multi-species amalgams. This heterogeneity, plus the high heterozygosity from outcrossing, means that large seedling populations are required in cultivar development. Efficient cross-pollination and seedling management techniques are required for these large populations. The trend of interspecific hybridisation continues today with four of the top 20 Californian cultivars being interspecifics involving plum and apricot. Fruit quality, functional food value, productivity and adaptation through disease resistance, chilling requirement and phenology are selection criteria in both Japanese and European plum breeding. Molecular markers are used for selection of self-compatibility and nematode resistance and for diversity and taxonomic studies. Most new rootstock releases are clonally propagated and of interspecific origin. The priorities for plum and peach rootstock breeding are similar and rootstocks developed for peach are sometimes also used for plum. American plum species, ancient Oriental cultivars and autochthonous European cultivars represent important germplasm resources that require preservation for use in future breeding.


Prunus salicina and P. domestica Japanese plum European plum cultivars interspecific hybrids rootstocks heritability disease resistance controlled pollination molecular markers self-incompatibility Genetic transformation Germplasm Production Taxonomy Progeny 



The authors gratefully acknowledge the contributions of Tom Beckman, Kenji Beppu, Unaroj Boonprakob, Glen Bradford, Peter Buchanan, David Byrne, Jose Chaparro, Ivan Day, Kesi Kesavan, Richard Haas, Nik Hulse, Alessandro Liverani, Jean Clement Marcaillou, Debby Maxfield, Chris Menzel, Valter Nencetti, Antonino Nicotra, Dick Okie, David Ramming, Maria do Carmo Bassols Raseira, Wayne Sherman, Chris Smith, Jorge Soria, Ien-chie Wen and Masami Yamaguchi. DEEDI employed BL Topp during part of this chapter preparation.


  1. Abdi, N., Holford, P., McGlasson, W.B., and Mizrahi, Y. 1997. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biol. Tech. 12:21–34.CrossRefGoogle Scholar
  2. Ahmad, R., Potter, D., and Southwick, S.M. 2004. Identification and characterization of plum and pluot cultivars by microsatellite markers. J. Hort. Sci. Biotech. 79:164–169.Google Scholar
  3. Andersen, E.T., and Weir, T.S. 1967. Prunus hybrids, selections and cultivars, at the University of Minnesota fruit breeding farm. Univ. Minn. Agric. Exp. Sta. Tech. Bull. 252.Google Scholar
  4. Andersen, R.L., Freer, J., and Watson, J. 2006a. New plum Jam SessionTM. New York Fruit Quart. 14:24.Google Scholar
  5. Andersen, R.L., Freer, J., and Watson, J. 2006b. New plum Blues JamTM. New York Fruit Quart. 14:26.Google Scholar
  6. Aranzana, M.J. Pineda, A., Cosson, P., Dirlewanger, E., Ascasiber, J., Cipriano, G., Ryder, C.D., Testolin, R., Abbott, A., King, G.J., Iezzoni, A.F., Arus, P. 2003. A set of simple-sequence repeat (SSR) markers covering the Prunus Genome. Theor.Appl. Gen., 108:819–825.Google Scholar
  7. Arbeloa, A., Daorden, M.E., Garcia, E., Wunsch, A., Hormaza, J.I., and Marin, J.A. 2006. Significant effect of accidental pollinations on the progeny of low setting Prunus interspecific crosses. Euphytica 147:389–394.CrossRefGoogle Scholar
  8. Arjmandi, B.H., Khalil, D.A., Lucas, E.A., Georgis, A., Stoecker, B.J., Hardin, C., Payton, M.E., and Wild, R.A. 2002. Dried plums improve indices of bone formation in postmenopausal women. J. Wom. Health Gender-Based Med. 11:61–68.CrossRefGoogle Scholar
  9. Ashton, R.W. 2008. Plums of North America. Third Millennium Publishing, Temple, Arizona.Google Scholar
  10. Atanasoff, D. 1935. Mosaic of stone fruits. Phytopathologische Zeitschrift 8, 259–284.Google Scholar
  11. Bailey, J.S. 1944. The beach plum in Massachusetts. Mass. Agric. Exp. Sta. Bull. 422.Google Scholar
  12. Bailey, L.H. 1892. The cultivated native plums and cherries. Corn. Univ. Agric. Exp. Sta. Bull. 38.Google Scholar
  13. Beckman, T.G. and Lang, G.A. 2003. Rootstock breeding for stone fruits. Acta Hort. 622:531–550.Google Scholar
  14. Beckman, T.G., Chaparro, J.X. and Sherman, W.B. 2008. ‘Sharpe’, a clonal plum rootstock for peach. HortScience 43:2236–2237.Google Scholar
  15. Bellini, E., and Nencetti, V. 2002a. “Dofi-Giudy”: A new early red Japanese plum. Acta Hort. 577:221–222.Google Scholar
  16. Bellini, E., and Nencetti, V. 2002b. “Dofi-Sandra”: A new early black Japanese plum. Acta Hort. 577:223–224.Google Scholar
  17. Bellini, E., Nencetti, V., and Nin, S. 2002. Genetic improvement of plum in Florence. Acta Hort. 577:19–24.Google Scholar
  18. Bellini, E., Nencetti, V., Nin, S., and Paraluppi, S. 1998. Ripening time within a cross-derived population of Japanese plum. Acta Hort. 478:61–66.Google Scholar
  19. Beppu, K., Yamane, H., Yaegaki, H., Yamaguchi, M., Kataoka, I., Tao, R. 2002. Diversity of S-RNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl). J. Hort. Sci. Biotech., 77:658–664.Google Scholar
  20. Beppu, K., Takemoto, Y., Yamane, H., Yaegaki, H., Yamaguchi, M., Kataoka, I., Tao, R. 2003. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by cross-pollination tests. J. Hort. Sci. Biotech., 78:315–318.Google Scholar
  21. Beppu, K., Yamane, H., Yaegaki, H., Yamaguchi, M., Tao, R. and Kataoka, I. 2004. Analysis of S-RNase genes in self-compatible cultivars of Japanese plum, ‘Methley’,‘Karari’ and ‘Kosyu’. J. Japan. Soc. Hort. Sci. 73(Suppl. 2):253.(In Japanese).Google Scholar
  22. Beppu, K., Komatsu, N., Yamane, H., Yaegaki, H., Yamaguchi, M., Tao, R., and Kataoka, I. 2005. S-e-haplotype confers self-compatibility in Japanese plum (Prunus salicina Lindl.). J. Hort. Sci. Biotech. 80:760–764.Google Scholar
  23. Beppu, K., Syogase, K., Yamane, H., Tao, R., and Kataoka, I. 2010. Inheritance of self-compatibility conferred by the Se-haplotype of Japanese plum and development of Se-RNase gene-specific PCR primers. J. Hort. Sci. Biotech. 85:215–218.Google Scholar
  24. Blazek, J. 2007. A survey of the genetic resources used in plum breeding. Acta Hort. 734:31–45.Google Scholar
  25. Boonprakob, U., Byrne, D.H., Graham, C.J., Okie, W.R., Beckman, T., and Smith, B.R. 2001. Genetic relationships among cultivated diploid plums and their progenitors as determined by RAPD markers. J. Amer. Soc. Hort. Sci. 126:451–461.Google Scholar
  26. Boonprakob, U., and Byrne, D.H. 2003. Species composition of Japanese plum founding clones as revealed by RAPD markers. Acta Hort. 622:473–476.Google Scholar
  27. Botu, M. 1998. Inheritance of some characteristics to the offspring and evaluation of the genitors’ value for plum. Acta Hort. 478:155–162.Google Scholar
  28. Brooks, R.M., and Olmo, H.P. 1997. Register of Fruit & Nut Varieties. 3rd ed. ASHS Press, Alexandria, Virginia.Google Scholar
  29. Butac, M., and Budan, S. 2009. Evaluation of local plum varieties (Prunus domestica L.) from the Romanian national collection. Acta Hort. 814:91–94.Google Scholar
  30. Buttner, R. 2001. Prunus, p. 513–525, In P. Hanelt, ed. Mansfields Encyclopedia of Agricultural and Horticultural Crops. Inst. Plant Genet. Crop Plant Res.Google Scholar
  31. Byrne, D.H. 1989. Inbreeding, coancestry, and founding clones of Japanese-type plums of California and the southeastern United States. J. Amer. Soc. Hort. Sci. 114:699–705.Google Scholar
  32. Byrne, D.H. 1990. Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J. Hered. 81:68–71.Google Scholar
  33. Byrne, D.H., Noratto, G., Cisneros-Zevallos, L., Porter, W., and Vizzotto, M. 2009. Health benefits of peach, nectarine and plums. Acta Hort. 841:267–274.Google Scholar
  34. Callahan, A. and Scorza, R. 2007. Effects of a peach antisense ACC oxidase gene on plum fruit quality. Acta Hort. 738:567–573.Google Scholar
  35. Câmara Machado, A., Katinger, H. Câmara Machado, M.L. 2007. Coat protein-mediated protection against plum pox virus in herbaceous model plants and transformation of apricot and plum. Euphytica 77:129–134. CrossRefGoogle Scholar
  36. Cevallos-Casals, B.A., Byrne, D., Okie, W.R., and Cisneros-Zevallos, L. 2006. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 96:273–280.CrossRefGoogle Scholar
  37. Cipriani, G., Lot, G., Huang, W-G., Marrazzo, M.T., Peterlunger, E., Testolin, R. 1999. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Gen. 99:65–72.CrossRefGoogle Scholar
  38. Clarke, J.B., Tobutt, K.R. 2003. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes 3:578–580.CrossRefGoogle Scholar
  39. Crane, M.B., and Lawrence, W.J.C. 1934. The genetics of garden plants. MacMillan and Co., Ltd., London, UK.Google Scholar
  40. Crawford, M. 1997. Fruit Varieties Resistant to Pests and Diseases. Agroforestry Res. Trust, Devon, UK.Google Scholar
  41. Crisosto, C.H., Garner, D., Crisosto, G.M., and Bowerman, E. 2004. Increasing ‘Blackamber’ plum (Prunus salicina Lindell) consumer acceptance. Postharvest Biol. Technol. 34:237–244.CrossRefGoogle Scholar
  42. Crisosto, C.H., Crisosto, G.M., Echeverria, G., and Puy, J. 2007. Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biol. Technol. 44:271–276.CrossRefGoogle Scholar
  43. Crow, J.F. 2001. Plant breeding giants: Burbank, the artist; Vavilov, the scientist. Genetics 158:1391–1395.PubMedGoogle Scholar
  44. CTFA. 2009. California Tree Fruit Agreement, Annual Report [Online]
  45. Cullinan, F.P. 1937. Improvement of stone fruits., p. 665–748 U.S. Dept. Agric. Yearbook of Agriculture. U.S. Govt. Printing Office, Washington.Google Scholar
  46. Cummins, J.N. and Aldwinckle, H.S. 1983. Rootstock breeding. p. 294–327. In J.N. Moore and J. Janick, eds. Methods In Fruit Breeding. Purdue Univ. Press, West Lafayette, Indiana.Google Scholar
  47. Dalbó., M.A., Klabunde, G.H.F., Nodari, R.O., Fernandes, D., Basso, M.F., 2010. Evolution of the response of segregating populations of plums and the association with microsatellite markers of leaf scald. Crop Breed. Appl. Biotech. 10:337–344.CrossRefGoogle Scholar
  48. Damiano, C., Gentile, A., Monticelli, S., Scorza, R., Kondakova, V., Todorovska, E., Kamenova, I., Badjiakov, I., Atanassov, A. 2007. Improving regeneration and transformation for resistance to Sharka in Prunus. Acta Hort. 738:583–587.Google Scholar
  49. Daorden, M.E., Marin, J.A., and Arbeloa, A. 2004. Stratification temperature affects the in vitro germination of immature Prunus embryos. Acta Hort.658:135–140.Google Scholar
  50. Day, L.H. 1953. Rootstocks for Stone Fruits. Calif. Agric. Exp. Sta. Ext. Bull. 736.Google Scholar
  51. DeBuse, C., Shaw, D.V., and DeJong, T. 2007. Heritabilities of seedling traits in a Prunus domestica (L.) breeding population. Acta Hort. 734:63–67.Google Scholar
  52. DeJong, T.M., Doyle, J.F. and DeBuse, C.J. 2002. Development of a prune breeding program in California. Acta Hort. 577:151–153.Google Scholar
  53. Dikeman, C.L., Bauer, L.L., and Fahey, G.C. 2004. Carbohydrate composition of selected plum/prune preparations. J. Agric. Food Chem. 52:853–859.PubMedCrossRefGoogle Scholar
  54. Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M.J., Poizat, C., Zanetto, A., Arus, P., Laigret, F. 2002. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor.Appl. Gen., 105:127–138.Google Scholar
  55. Dirlewanger, E., Cosson, P., Howad, W., Capdeville, G., Bosselut, N., Claverie, M., Voisin, R., Poizat, C., Lafargue, B., Baron, O., Laigret, F., Kleinhentz, M., Arús, P., Esmejaud, D. 2004. Microssatelite genetic linkage maps of mirobalan plum and almond-peach hybrid - Location of root-knot nematode resistance genes. Theor. Appl. Genet. 109:827–838.PubMedCrossRefGoogle Scholar
  56. Dirlewanger, E., Cosson, P., Boudehri, K., Renaud, C., Capdeville, G., Tauzin, Y., Laigret, F., Moing A., 2006. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet. Genom. 3:1–3.Google Scholar
  57. Dondini, L., Lain, O., Geuna, F., Banfi, R., Gaiotti, F., Tartarini, S., Bassi, D., Testolin, R. 2006. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet. Genom. 3:239–249.CrossRefGoogle Scholar
  58. Dorsey, M.J., and Bushnell, J. 1925. Plum investigations II. The inheritance of hardiness. Univ. Minn. Agric. Exp. Sta. Tech. Bull. 32.Google Scholar
  59. Ducroquet, J.P., Dalbó, M.A. 2007. SCS 409 Camila e SCS 410 Piuna - Novas cultivares de ameixeira com resistência à escaldadura das folhas. Agropecuária Catarinense 20:67–70.Google Scholar
  60. El-Agamy, S.Z., and Sherman, W.B. 1987. Sequence of pollination in relation to fruit set and progeny produced in peach (Prunus persica L. Batsch). J. Hort. Sci. 62:469–473.Google Scholar
  61. Ercisli, S. 2004. A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51:419–435.CrossRefGoogle Scholar
  62. Erturk, Y., Ercisli, S., Maghradze, D., Orhan, E., and Agar, G. 2009. An assessment of genetic variability and relationships among wild-grown blackthorn (Prunus spinosa L.) plants based on RAPD markers. Genet. Mol. Res. 8:1238–1244.PubMedCrossRefGoogle Scholar
  63. FAO. 2006. Food and Agriculture Organisation of the United Nations - Crop Production [Online]
  64. Faust, M., and Surányi, D. 1999. Origin and dissemination of plums. Hort. Rev. 23:179–231.Google Scholar
  65. Fogle, H.W. 1978. Plum improvement in the United States. Acta Hort. 74:35–40.Google Scholar
  66. Gercheva, P., and Zhivondov, A. 2002. Embryo rescue of early ripening plum cultivars. Acta Hort. 577:165–168.Google Scholar
  67. Gil, M.I., Tomas-Barberan, F.A., Hess-Pierce, B., and Kader, A.A. 2002. Antioxidant capacities, phenolic compounds, carotenoids, and Vitamin C contents of nectarine, peach and plum cultivars from California. J. Agric. Food Chem. 50:4976–4982.PubMedCrossRefGoogle Scholar
  68. Gomez, E., and Ledbetter, C. 1993. Transmission of Biochemical Flavor Constituents from Apricot and Plum to Their Interspecific Hybrid. Plant Breeding 111:236–241.CrossRefGoogle Scholar
  69. Gomez, E., and Ledbetter, C.A. 1994. Comparative-Study of the Aromatic Profiles of 2 Different Plum Species – Prunus salicina Lindl and Prunus simonii L. J. Sci. Food Agric. 65:111–115.CrossRefGoogle Scholar
  70. Gomez, E., and Ledbetter, C.A. 1997. Development of volatile compounds during fruit maturation: Characterization of apricot and plum x apricot hybrids. J. Sci. Food Agric. 74:541–546.CrossRefGoogle Scholar
  71. Gomez-Plaza, E., and Ledbetter, C. 2010. The flavor of plums. p.415–430. In: Y.H. Hui (ed.) Handbook of fruit and vegetable flavors. John Wiley & Sons Inc.Google Scholar
  72. Gomez, E., Ledbetter, C.A., and Hartsell, P.L. 1993. Volatile Compounds in Apricot, Plum, and Their Interspecific Hybrids. Journal of Agricultural and Food Chemistry 41:1669–1676.CrossRefGoogle Scholar
  73. Gonzalez-Padilla,I.M., Webb,K., Scorza, R. 2003. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.).Plant Cell Reports 22:38–45. PubMedCrossRefGoogle Scholar
  74. Hagen, L.S., Chaib, J., Fady, B., Decroocq, V., Bouchet, J.P., Lambert, P., Audergon, J.M. 2004. Genomic and cDNA microsatellite from apricot (Prunus armeniaca L.). Mol. Ecol. Notes 4:742–745.Google Scholar
  75. Hansche, P.E., Hesse, C.O., and Beres, V. 1975. Inheritance of Fruit Size, Soluble Solids, and Ripening Date in Prunus domestica Cv Agen. J. Amer. Soc. Hort. Sci. 100:522–524.Google Scholar
  76. Hartmann, W., and Neumüller, M. 2009. Plum breeding, p. 1–71 Breeding Plantation Tree Crops: Temperate Species. Springer, New York.Google Scholar
  77. Hedrick, U.P. 1911. The plums of New York N.Y. Agric. Exp, Sta. 18th Ann. Rep. Vol 3, Part II, Geneva.Google Scholar
  78. Hily, J.-M., Scorza, R., Webb, K., Ravelonandro, M. 2005. Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant-Microbe Interact. 18:794–799.PubMedCrossRefGoogle Scholar
  79. Howard, W.L. 1945. Luther Burbank’s plant contributions. Cal. Agric. Exp. Sta. Bull. 691.Google Scholar
  80. Hunter, A.W.S., and Bragdo, M. 1958. The cytology of three hybrids between diploid and hexaploid plums (Prunus spp.). Proc. 10th Int. Congr. Genet., Montreal 2:128. Abstract from Knight, R.L. 1969. Abstract Bibliography of Fruit Breeding and Genetics to 1965 Prunus. CAB, London.Google Scholar
  81. Jacob, H.B. 2007a. Experience with new mirabelle cultivars from Geisenheim: ‘Bellamira’(R) and ‘Miragrande’(R) as fruit for the fresh market and for distillation. Acta Hort. 734:347–351.Google Scholar
  82. Jacob, H.B. 2007b. Twenty-five years plum breeding in Geisenheim, Germany: breeding targets and previous realisations. Acta Hort. 734:341–346.Google Scholar
  83. Janick, J., and Paull, R.E. 2008. The Encyclopedia of Fruit & Nuts CABI, Wallingford UK.Google Scholar
  84. Joobeur, T., Periam, N., de Vicente, M.V., King, G.J., Arus, P. 2000. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome, 43:649–655.PubMedCrossRefGoogle Scholar
  85. Jun, J.H., and Chung, K.H. 2007. Interspecific cross compatibility among plum, apricot and plumcot. Korean J. Hort. Sci. Tech. 25:217–222.Google Scholar
  86. Jun, J.H., Chung, K.H., Kang, S.J., Kwack, Y.B., Park, K.S., Yun, H.K., and Jeong, S.B. 2008. ‘Honey Red’, an early maturing Japanese plum. J. Amer. Pom. Soc. 62:27–29.Google Scholar
  87. Jun, J.H., Kwon, J.H., and Chung, K.H. 2009. Morphological Characteristics of Interspecific Hybrids between Japanese Plum (Prunus salicina Lindl.) cv. Soldam and Apricot (P. armeniaca L.) cv. Harcot. Korean J. Hort. Sci. Tech. 27:269–274.Google Scholar
  88. Kataoka, I., Sugiura, A., and Tomana, T. 1988. Interspecific Hybridization between Microcerasus and Other Prunus Spp. J. Jap. Soc. Hort. Sci. 56:398–407 (English summary).Google Scholar
  89. Katayama, H., and Uematsu, C. 2005. Structural analysis of chloroplast DNA in Prunus (Rosaceae): evolution, genetic diversity and unequal mutations. Theor. App. Genet. 111:1430–1439.CrossRefGoogle Scholar
  90. Kaufmane, E., Ikase, L., Trajkovski, V., and Lacis, G. 2002. Evaluation and characterization of plum genetic resources in Sweden and Latvia. Acta Hort. 577:207–213.Google Scholar
  91. Khoshbakht, K., and Hammer, K. 2005. Savadkouh (Iran) - an evolutionary centre for fruit trees and shrubs. Genet. Resources Crop Evol. 00:1–11.Google Scholar
  92. Kim, D.O., Jeong, S.W., and Lee, C.Y. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81:321–326.CrossRefGoogle Scholar
  93. Kim, H.J., Yu, M.H., and Lee, I.S. 2008. Inhibitory effects of methanol extract of plum (Prunus salicina L., cv. ‘Soldam’) fruits against benzo(alpha)pyrene-induced toxicity in mice. Food Chem. Tox. 46:3407–3413.Google Scholar
  94. La Rue, J.H., and Johnson, R.S. 1989. Peaches, Plums and Nectarines - Growing and Handling for Fresh Market. Univ. of Cal., Oakland, California.Google Scholar
  95. Lea, M.A., Ibeh, C., desBordes, C., Vizzotto, M., Cisneros-Zevallos, L., Byrne, D.H., Okie, W.R. and Moyer, M.P. 2008. Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds. Anticancer Res. 28:2067–2076.PubMedGoogle Scholar
  96. Ledbetter, C.A., Peterson, S.J., and Burgos, L. 1994. Variability of horticultural characteristics among plumcot progenies. J. Genet. Breed. 48:117–123.Google Scholar
  97. Lespinasse, Y., Durel, C.E., Eskes, A., Esmenjaud, D., and Poessel, J.L. 2003. Resistance to biotic stress in fruit trees. Acta Hort. 622:303–315.Google Scholar
  98. Lin, P., and Shi, L. 1989. The discovery and distribution of Ili wild Prunus domestika (P. communis Fritsch) in Xinjiang, p. 282–286 International Symposium on Horticultural Germplasm, Cultivated and Wild. Part 1. Fruit Trees. Internat. Acad. Pub. Beijing, China.Google Scholar
  99. Liu, W. 2007. Plum production in China. Acta Hort. 734:89–92.Google Scholar
  100. Liu, W.S., Liu, D.C., Feng, C.J., Zhang, A.M., and Li, S.H. 2006. Genetic diversity and phylogenetic relationships in plum germplasm resources revealed by RAPD markers. J. Hort. Sci. Biotech. 81:242–250.Google Scholar
  101. Liu, W.S., Liu, D.C., Zhang, A.M., Feng, C.J., Yang, J.M., Yoon, J.H., and Li, S.H. 2007a. Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with inter-simple sequence repeat markers. J. Amer. Soc. Hort. Sci. 132:619–628.Google Scholar
  102. Liu, W., Chen, X.S., Liu, G.J., Liang, Q., He, T.M., and Feng, J.R. 2007b. Interspecific hybridization of Prunus persica with P. armeniaca and P. salicina using embryo rescue. Plant Cell Tissue and Organ Culture 88:289–299.CrossRefGoogle Scholar
  103. Lopes, M.S., Sefc, K.M., Laimer, M., Camara Machado, A. 2002. Identification of microsatellite loci in apricot. Molecular Ecology Notes, 2:24–26.CrossRefGoogle Scholar
  104. Lozano, M., Vidal-Aragon, M.C., Hernandez, M.T., Ayuso, M.C., Bernalte, M.J., Garcia, J., and Velardo, B. 2009. Physicochemical and nutritional properties and volatile constituents of six Japanese plum (Prunus salicina Lindl.) cultivars. European Food Res. Tech. 228:403-410.Google Scholar
  105. Malinowski, T., Cambra, M., Capote, N., Zawadzka, B., Gorris, M.T., Scorza, R., Ravelonandro, M. 2006. Field trials of plum clones transformed with the Plum pox virus coat protein (PPV-CP) gene. Plant Dis., 90:1012–1018.CrossRefGoogle Scholar
  106. Mante, S., Morgens, P. H., Scorza, R., Cordts, J. M., Callahan, A. M. 1991. Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. BioTech. 9:853–857.CrossRefGoogle Scholar
  107. Messina, R., Lain, O., Marrazzo, M.T., Cipriani, G., Testolin, R. 2004. New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4:432–434.CrossRefGoogle Scholar
  108. Mikhailov, R.V. and Dolgov, S.V., 2007. Transgenic plum (Prunus domestica L.) plants obtained by Agrobacterium-mediated transformation of leaf explants with use of various selective agents. Acta Hort. 738:613–623.Google Scholar
  109. Minev, I., and Balev, M. 2002. Interspecific hybrids of the Prunus genus bred at RIMSA, Troyan, Acta Hort. 577:195–198.Google Scholar
  110. Mneija, M., Garcia-Mas, J., Howad, W., Badenes, M.L., Arús, P. 2004. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina) are highly polymorphic and transferable to peach and almond. Mol. Ecol. Notes 4:163–166.CrossRefGoogle Scholar
  111. Mneija, M., Garcia-Mas, J., Howad, W., Arús, P. 2005. Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5:531–535.CrossRefGoogle Scholar
  112. Moraes, L.K.A., 2005. Avanços no mapeamento genético da resistência à escaldadura das folhas em ameixeira. MSc. Thesis, UFSC, 96 p.Google Scholar
  113. Moreno, M.A., Tabuenca, M.C. and Cambra, R. 1995. Adesto 101, a plum rootstock for peaches and other stone fruit. HortScience 30:1314–1315.Google Scholar
  114. Moreno, M.A. 2004. Breeding and selection of Prunus rootstocks at the Aula Dei Experimental Station, Zaragoza, Spain. Acta Hort. 658:519–528.Google Scholar
  115. Nagel, A.K., Schnabel, G., Petri, C., Scorza, R. 2008. Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein. HortScience, 43:1514–1521.Google Scholar
  116. Nakasu, B.H., Bassols, M., and Feliciano, A.J. 1981. Temperate fruit breeding in Brazil. Fruit Var. J. 35:114–122. NC-140. 2002.Google Scholar
  117. NC-140, 2002. NC-140 Regional Rootstock Research Project. [Online]
  118. Neumüller, M., Lanzl, S., Hartmann, W., Feucht, W., and Treutter, D. 2009. Towards an understanding of the inheritance of hypersensitivity resistance against the sharka virus in European plum (Prunus domestica L.): generation of interspecific hybrids with lower ploidy levels. Acta Hort. 814:721–726.Google Scholar
  119. Nicotra, A. and Moser, L. 1997. Two new plum rootstocks for peach and nectarines: Penta and Tetra. Acta Hort. 451:269–271.Google Scholar
  120. Nunes, C., Coimbra, M.A., Saraiva, J., and Rocha, S.M. 2008. Study of the volatile components of a candied plum and estimation of their contribution to the aroma. Food Chem. 111:897–905.CrossRefGoogle Scholar
  121. Nunez de Gonzalez, M.T., Hafley, B.S., Boleman, R.M., Miller, R.K., Rhee, K.S., and Keeton, J.T. 2008. Antioxidant properties of plum concentrates and powder in precooked roast beef to reduce lipid oxidation. Meat Sci. 80:997–1004.PubMedCrossRefGoogle Scholar
  122. Okie, W.R. 1987. Plum rootstocks, p. 321–360, In R. C. Rom and R. F. Carlson, eds. Rootstocks for fruit crops. Wiley, New York.Google Scholar
  123. Okie, W.R. 2001. Plum crazy: Rediscovering our lost Prunus resources. HortScience 36:209–213.Google Scholar
  124. Okie, W.R. 2006. Introgression of Prunus species in plum. New York Fruit Quart. 14:29–37.Google Scholar
  125. Okie, W.R., and Hancock, J.F. 2008. Plums, pp. 337–358 Temperate Fruit Crop Breeding. Springer, New York.Google Scholar
  126. Okie, W.R., and Ramming, D.W. 1999. Plum breeding worldwide. HortTechnology 9:162–176.Google Scholar
  127. Okie, W.R., and Weinberger, J.H. 1996. Plums, p. 559–607, In J. Janick and J. N. Moore, eds. Fruit Breeding, Volume I: Tree and Tropical Fruits. John Wiley & Sons, Inc., New York.Google Scholar
  128. Olden, E.J. 1965. Interspecific plum crosses. Res. Rep. Balsgard Fruit Breed. Inst. No. 1. 58pp. Abstract from Knight, R.L. 1969. Abstract Bibliography of Fruit Breeding and Genetics to 1965 Prunus. CAB, LondonGoogle Scholar
  129. Ortiz, A., Renaud, R., Calzada, I., and Ritter, E. 1997. Analysis of plum cultivars with RAPD markers. J. Hort. Sci. 72:1–9.CrossRefGoogle Scholar
  130. Pascal, T., Levigneron, A., Kervella, J., and Nguyen-The, C. 1994. Evaluation of two screening methods for resistance of apricot, plum and peach to Monilinia laxa. Euphytica 77:19–23.CrossRefGoogle Scholar
  131. Paunovic, S.A. and Misic, P.D. 1975. The study of inheritance in the plum progenies. Acta Hort. 48:91–109.Google Scholar
  132. Petri, C., Webb, K., Hily, J.-M., Dardick, C., Scorza, R. 2008. High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp.. Mol. Breed. 22:581–591.CrossRefGoogle Scholar
  133. Petri, C., Scorza, R., Dardick, C. 2009a. Genetic engineering of plum (Prunus domestica L.) for plant improvement and genomics research in Rosaceae. p.277–290, In: K.M. Folta and S.E. Gardiner (eds.) Genetics and genomics of Rosaceae, Plant genetics and genomics : crops and models Vol. 6. Springer, New York.Google Scholar
  134. Petri, C., Webb, K., Dardick, C., Scorza, R. 2009b. A high-throughput transformation system in plum (Prunus domestica L.) useful for functional genomics in Rosaceae. Acta Hort. 839:375–379.Google Scholar
  135. Petrovic, R., Miletic, R., and Mitrovic, M. 2002. The results of the study on autochthonous plum cultivars in Eastern Serbia. Acta Hort. 577:239–243.Google Scholar
  136. Prunus Crop Germplasm Committee. 2010. Prunus vulnerability statement USDA - ARS National Plant Germplasm System [Online]. Available by
  137. Qiao, Y.S., Fang, J.G., Cong, Y., Zhou, J., and Zhang, Z. 2007. Analysis of genetic diversity of Japanese plum cultivars based on RAPD, ISSR and SSR markers. Acta Hort. 763:177–183.Google Scholar
  138. Ramming, D.W. 1983. Embryo culture, p. 136–144, In J. N. Moore and J. Janick, eds. Methods in Fruit Breeding. Purdue Univ. Press, West Lafayette, Indiana.Google Scholar
  139. Ramming, D.W., and Cociu, V. 1991. Plums (Prunus), p. 235–287, In J. N. Moore and J. R. J. Ballington, eds. Genetic Resources of Temperate Fruit and Nut Crops. ISHS, Wageningen.Google Scholar
  140. Ravelonandro, M., Monsion, M., Teycheney, P.Y., Delbos, R., Dunez, J. 1992. Construction of a chimeric viral gene expressing plum pox virus coat protein. Gene 120:167–173.PubMedCrossRefGoogle Scholar
  141. Reales, A., Sargent, D.J., Tobutt, K.R., and Rivera, D. 2010. Phylogenetics of Eurasian plums, Prunus L. section Prunus (Rosaceae), according to coding and non-coding chloroplast DNA sequences. Tree Genet. Genom. 6:37–45.Google Scholar
  142. Rehder, A. 1954. Manual of cultivated trees and shrubs. 2nd ed. Dioscorides Press, Portland.Google Scholar
  143. Reid, W., and Gast, K.L.B. 1993. The potential for domestication and utilization of native plums in Kansas, p. 520–523, In J. Janick and J. E. Simon, eds. New Crops. Wiley, New York.Google Scholar
  144. Renaud, R. 1975. A study of inheritance in plum intraspecific cross-breeding. Acta Hort. 48:79–82.Google Scholar
  145. Renaud, R., and Salesses, G. 1994. Interspecific hybridization and rootstocks breeding for European plums. Acta Hort. 359:97–100.Google Scholar
  146. Reynders-Aloisi, S., and Grellet, F. 1994. Characterization of the ribosomal DNA units in two related Prunus species (P. cerasifera and P. spinosa). Plant Cell Reports 13:641–646.CrossRefGoogle Scholar
  147. Roach, F.A. 1985. Plums, p. 142–460 Cultivated Fruits of Britain, their Origin and History. Basil Blackwell, Oxford, UK.Google Scholar
  148. Roberts, A.N., and Hammers, L.A. 1951. The native Pacific plum in Oregon. Oregon State Coll. Agric. Exp. Sta. Bull. 502.Google Scholar
  149. Rohrer, J.R., Ahmad, R., Southwick, S.M., and Potter, D. 2004. Microsatellite analysis of relationships among North American plums (Prunus sect. Prunocerasus, Rosaceae). Plant Syst. Evol. 244:69–75.Google Scholar
  150. Rupasinghe, H.P.V., Jayasankar, S., and Lay, W. 2006. Variation in total phenolics and antioxidant capacity among European plum genotypes. Scientia Hort. 108:243–246.CrossRefGoogle Scholar
  151. Salinero, C., Aguin, O., and Sainz, M.J. 2003. Fruit yield and characteristics of three cultivars of mirabelle plum (Prunus insititia var. syriaca) in northwest Spain. J. Amer. Pom. Soc. 57:70–75.Google Scholar
  152. Sapir, G., Stern, R.A., Eisikowitch, D., Goldway, M. 2004. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. J. Hort. Sci. Biotech., 79:223–227.Google Scholar
  153. Scorza, R., Callahan, A., Levy, L., Damsteegt, V., Webb, K., Ravelonandro, M. 2001. Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res., 10:201–209.PubMedCrossRefGoogle Scholar
  154. Scorza, R., Hily, J.-M., Callahan, A., Malinowski, T., Cambra, M., Capote, N., Zagrai, I., Damsteegt, V., Briard, P., Ravelonandro, M. 2007. Deregulation of Plum Pox transgenic plum ‘Honeysweet’. Acta Hort., 738:669–673.Google Scholar
  155. Shaw, J., and Small, R.L. 2004. Addressing the “hardest puzzle in American pomology:” Phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Am. J. Bot. 91:985–996.PubMedCrossRefGoogle Scholar
  156. Shaw, J., and Small, R.L. 2005. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92:2011–2030.PubMedCrossRefGoogle Scholar
  157. Sherman, W.B. and Lyrene, P.M. 1983. Handling seedling populations, p. 66–73, In J. N. Moore and J. Janick, eds. Methods In Fruit Breeding. Purdue Univ. Press, West Lafayette, Indiana.Google Scholar
  158. Sherman, W.B. and Lyrene, P.M. 1998. ‘Gulfbeauty’ and ‘Gulfblaze’ Japanese-type plums. Fruit Var. J.52:19–19.Google Scholar
  159. Sherman, W.B., Topp, B.L., and Lyrene, P.M. 1992. Breeding low-chill Japanese-type plums for subtropical climates. Acta Hort. 317:149–153.Google Scholar
  160. Sosinski, B., Gannavarapu, M., Hage, L.D., Beck, E., King, G.J., Ryder, C.D., Rajapakse, S., Baird, W.V., Ballard, R.E., Abbott, A.G. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Gen., 101:421–428.Google Scholar
  161. Srinivasan, C., Liu, Z., Scorza, R. 2011a. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L). Plant Cell Reports 30:655–664.PubMedCrossRefGoogle Scholar
  162. Srinivasan, C., Scorza, R., Callahan, A., Dardick, C. 2011b. Development of very early flowering and normal fruiting plum with fertile seeds. United States Patent Application Pub. US 2011/0067147.Google Scholar
  163. Stacewicz-Sapuntzakis, M., Bowen, P.E., Hussain, E.A., Damayanti-Wood, B.I., and Farnsworth, N.R. 2001. Chemical composition and potential health effects of prunes: A functional food? Critical Rev. Food Sci. Nutrit. 41:251–286.CrossRefGoogle Scholar
  164. Starnes, H.N. 1905. Japan and hybrid plums. State Coll. Agric. Mech. Arts, Georgia Exp. Sta. Bull. 68.Google Scholar
  165. Struss, D., Ahmad, R., Southwick, S.M. 2003. Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J. Amer. Soc. Hort. Sci., 128:421–428.Google Scholar
  166. Sutherland, B.G., Robbins, T.P., Tobutt, K.R. 2004a. Primers amplifying a range of Prunus S-alleles. Plant Breeding, 123:582–584.CrossRefGoogle Scholar
  167. Sutherland, B.G., Robbins, T.P., Tobutt, K.R., 2004b. Molecular genetics of self-incompatibility in plums. Acta Hort. 663:557–562.Google Scholar
  168. Sutherland, B.G., Tobutt, K.R., and Robbins, T.P. 2007. Molecular genotyping of self-incompatible plum cultivars. Acta Hort. 734:47–51.Google Scholar
  169. Testolin, R., Messina, R., Lain, O., Marrazzo, M.T., Huang, W-G., Cipriani, G. 2004. Microsatellites isolated in almond from an AC-repeat enriched library. Mol. Ecol. Notes 4:459–461.CrossRefGoogle Scholar
  170. Theiler, R., 1971: Embryonenkultur für die Anzucht neuer Kirschenhybriden (Prunus avium L.). Schweiz. Landwirt. Forsch. 10:65–93.Google Scholar
  171. Tian, L.-N., Wen, Y., Jayasankar, S., Sibbald, S. 2007. Regeneration of Prunus salicina Lindl (Japanese plum) from hypocotyls of mature seeds. In Vitro Cellular Develop. Biol. 43:343–347.Google Scholar
  172. Tomas-Barberan, F.A., Gil, M.I., Cremin, P., Waterhouse, A.L., Hess-Pierce, B., and Kader, A.A. 2001. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 49:4748–4760.PubMedCrossRefGoogle Scholar
  173. Topp, B.L. and Russell, D.M. 1989. Breeding early ripening Japanese plums. Acta Hort. 240:27–30.Google Scholar
  174. Topp, B.L., and Russell, D.M. 1990a. ‘Queensland Bellerosa’ plum. HortScience 25:814.Google Scholar
  175. Topp, B.L., and Russell, D.M. 1990b. ‘Queensland Earlisweet’ cherry plum. HortScience 25:713.Google Scholar
  176. Topp, B.L., and Sherman, W.B. 1990a. Potential for low-chill Japanese plums in Florida. Proc. Fla. State Hort. Soc. 103:294–298.Google Scholar
  177. Topp, B.L., and Sherman, W.B. 1990b. Sources of bacterial spot resistance in Japanese-type plum cultivars. Fruit Var. J. 44:32–35.Google Scholar
  178. Topp, B.L., Heaton, J.B., Russell, D.M., and Mayer, R. 1989. Field susceptibility of Japanese-type plums to Xanthomonas campestris pv. pruni. Aust. J. Exp. Agric. 29:905–909.CrossRefGoogle Scholar
  179. Topp, B.L., Sherman, W.B., and Stall, R.E. 1991. Comparison of rating methods for bacterial spot resistance in Japanese-type plum. Fruit Var. J. 45:70–74.Google Scholar
  180. Urtubia, C., Devia, J., Castro, A., Zamora, P., Aguirre, C., Tapia, E., Barba, P., Dell’Orto, P., Moynihan, M., Petri, C., Scorza, R., Prieto, H. 2008. Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Reports. DOI 10.1007/s00299-008-0559-0.Google Scholar
  181. USDA. 2007. Fruit and Tree Nuts Situation and Outlook Yearbook. Market and Trade, Economics Division, Economic Research Service, U.S. Department of Agriculture, October 2007, FTS-2007.Google Scholar
  182. Vangdal, E., Sekse, L., and Slimestad, R. 2007. Phenolics and other compounds with antioxidative effect in stone fruit - Preliminary results. Acta Hort. 734:357–361.Google Scholar
  183. Vaughan S.P., Russell K. 2004. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol. Ecol. Notes 4: 429–431.CrossRefGoogle Scholar
  184. Vieira, E.A., Nodari, R.O., Dantas, A.C.M., Ducroquet, J.P., Dalbó, M., Borges, C.V. 2005. Genetic mapping of the Japanese plum. Crop Breed. Appl. Biotech. 5:29–37.Google Scholar
  185. Vizzotto, M., Cisneros-Zevallos, L., Byrne, D.H., Ramming, D.W., and Okie, W.R. 2007. Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm. J. Amer. Soc. Hort. Sci. 132:334–340.Google Scholar
  186. Wakana, A., Hanada, N., Torikai, Y., Fukudome, I., and Yasukochi, K. 2006. The extent of intersubgeneric cross compatibility between Japanese plum (Prunus salicina Lindl.) and peach (P. percica Batsch.). J. Fac. Agric. Kyushu Univ. 51:87–92 (English summary).Google Scholar
  187. Walsh, K., Long, R.L. and Middleton, S.G. 2007. Use of near infra-red spectroscopy in evaluation of source-sink manipulation to increase the soluble sugar content of stonefruit. J. Hort. Sci. Biotech. 82:316–322.Google Scholar
  188. Wang, A.M., Tian, L.N., Huang, T.S., Brown, D.C.W., Svircev, A.M., Stobbs, L.W., Kiki, B.L.A. and Sanfacon, H. 2009., 2009. The development of genetic resistance to Plum pox virus in transgenic Nicotiana Benthamiana and Prunus Domestica. Acta Hort. 839:665–672.Google Scholar
  189. Watkins, R. 1976. Cherry, plum, peach, apricot and almond. Prunus spp., pp. 242–247, In N. W. Simmonds, ed. Evolution of crop plants. Longman., London UK.Google Scholar
  190. Weinberger, J.H. 1975. Plums, p. 336–347, In J. Janick and J. N. Moore, eds. Advances in Fruit Breeding. Purdue University Press, West Lafayette, Indiana.Google Scholar
  191. Weinberger, J.H., and Thompson, L.A. 1962. Inheritance of certain fruit and leaf characters in Japanese plums. Proc. Amer. Soc. Hort. Sci. 81:172–179.Google Scholar
  192. Wen, I.C., and Liu, Y. 2004. Evaluation and genetic relationship analysis by RAPD on Oriental plum germplasm. Journal of Agricultural Research of China 53:97–110 (in Chinese).Google Scholar
  193. Wen, I.C., and Sherman, W.B. 2003. Developing low chill, high quality Japanese plums in subtropical Taiwan. Acta Hort. 622:437–441.Google Scholar
  194. Werner, D.J., Ritchie, D.F., Cain, D.W., and Zehr, E.I. 1986. Susceptibility of peaches and nectarines, plant introductions, and other Prunus species to bacterial spot. HortScience 21:127–130.Google Scholar
  195. Werner, D.J., Mowrey, B.D., and Young, E. 1988. Chilling requirement and post-rest heat accumulation as related to difference in time of bloom between peach and western sand cherry. J. Amer. Soc. Hort. Sci. 113:775–778.Google Scholar
  196. Wight, W.F. 1915a. Native American species of Prunus. U.S. Dept. Agric. Bull. 179.Google Scholar
  197. Wight, W.F. 1915b. The varieties of plums derived from native American species. U.S. Dept. Agric. Bull. 172.CrossRefGoogle Scholar
  198. Yamaguchi, M. and Kyotani, H. 1985. Differences in fruit ripening patterns of Japanese plum cultivars under high (30oC) and medium (20oC) temperature storage. Bull. Fruit Tree Res. Stn. A 13:1–19. (English summary).Google Scholar
  199. Yamaguchi, M., Yoshida, M., Kyotani, H., Nakamura, Y., Nishimura, K., Haji, T., and Miyake, M. 1998. New Japanese plum cultivar ‘Honey Rosa’. Bull. Nat. Inst. Fruit Tree Sci. 30–31:1–14.Google Scholar
  200. Yamaguchi, M., Yoshida, M., Kyotani, H., Nakamura, Y., Nishimura, K., Haji, T., and Miyake, M. 1999. New Japanese plum cultivar ‘Honey Heart’. Bull. Nat. Inst. Fruit Tree Sci. 32:15–29.Google Scholar
  201. Yamane, H., Tao, R., Sugiura, A. 1999. Identification and cDNA cloning of S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. Cv. Sordum). Plant Biotech. 16:389–396.CrossRefGoogle Scholar
  202. Yamamoto, T., Mochida, K., Imai, T., Shi, Y.Z., Ogiwara, I., Hayashi, T. 2002. Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol. Ecol. Notes 2:298–301.Google Scholar
  203. Yancheva, S.D., Druart, P., Watilon, B. 2002. Agrobacterium-mediated transformation of plum (Prunus domestica L). Acta Hort. 577:215–217.Google Scholar
  204. Yezhov, V.N., Smykov, A.V., Smykov, V.K., Khokhlov, S.Y., Zaurov, D.E., Mehlenbacher, S.A., Molnar, T.J., Goffreda, J.C., and Funk, C.R. 2005. Genetic resources of temperate and subtropical fruit and nut species at the Nikita Botanical Gardens. HortScience 40:5–9.Google Scholar
  205. Yoshida, M. 1987. The origin of fruits, 2: Plums. Fruit Japan 42:49–53.Google Scholar
  206. Zhang, J., Lu, Z., and Guan, S. 1997. The plum germplasm resources in the cold area of Northeast China. China Fruits 4:44–45.Google Scholar
  207. Zhivondov, A. 2007. Biometric studies of plum-apricot hybrids (Prunus domestica x Armeniaca vulgaris). Vocarstvo 41:9–12.Google Scholar
  208. Zhivondov, A., and Djouvinov, V. 2002. Some results of the plum breeding programme at the Fruit-Growing Research Institute in Plovdiv. Acta Hort. 577:45–49.Google Scholar
  209. Zohary, D. 1992. Is the European plum, Prunus domestica L., a P. cerasifera EHRH. × P. spinosa L. allo-polyploid? Euphytica 60:75–77.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bruce L. Topp
    • 1
    Email author
  • Dougal M. Russell
    • 2
  • Michael Neumüller
    • 3
  • Marco A. Dalbó
    • 4
  • Weisheng Liu
    • 5
  1. 1.Queensland Alliance for Agriculture and Food InnovationUniversity of Queensland Maroochy Research Station, SCMCNambourAustralia
  2. 2.Department of Employment and Economic DevelopmentHorticulture & Forestry ScienceNambourAustralia
  3. 3.Fachgebiet ObstbauTechnische Universität MünchenFreisingGermany
  4. 4.Epagri, Estação Experimental de VideiraVideiraBrazil
  5. 5.Liaoning Institute of Pomology, XiongyueYingkouPeople’s Republic of China

Personalised recommendations