Skip to main content

Differences Between Positively and Negatively Supercoiled DNA that Topoisomerases May Distinguish

  • Conference paper
  • First Online:
Mathematics of DNA Structure, Function and Interactions

Abstract

In all living cells, DNA is homeostatically underwound relative to its lowest energy conformation, resulting in egative supercoiling. This underwinding of DNA is critical to the metabolism of DNA and, thus, is vital to cell survival. Enzymes called topoisomerases regulate and maintain the supercoiled state of DNA and are critical to the successful replication of the genome. These enzymes are major targets for drugs used in the treatment of bacterial infections and cancer. One puzzling phenomenon of the topoisomerase mechanism is how these enzymes, orders of magnitude smaller than their substrate, can search, recognize and act at a local level to affect global DNA topology. While the homeostatic state of DNA supercoiling in cells is negative, both positive and negative supercoils exist transiently. Because of the right-handed nature of the DNA helix, the positive and negative supercoils are not equivalent. Several computational and theoretical models have been developed in an effort to describe the features of both positively and negatively supercoiled DNA. These models have accurately predicted some of the phenomena observed in vivo. However, the over-simplifying assumptions cannot account for the different biological activities of positively and negatively supercoiled DNA. This review will discuss the models in place and the mathematical and energetic properties of this elegant molecule and the “machines that push it around.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian M., ten Heggeler-Bordier B., Wahli W., Stasiak A.Z., Stasiak A., and Dubochet J. (1990). Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9, 4551–4554.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allemand J.F., Bensimon D., Lavery R., and Croquette V. (1998). Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl. Acad. Sci. USA 95, 14152–14157.

    CAS  PubMed  Google Scholar 

  • Anderson P. and Bauer W. (1978) Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry. 17, 594–601.

    CAS  PubMed  Google Scholar 

  • Anderson V.E. and Osheroff N. (2001). Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des. 7, 337–353.

    CAS  PubMed  Google Scholar 

  • Arai Y., Yasuda R., Akashi K., Harada Y., Miyata H., Kinosita K.J., and Itoh H. (1999). Tying a molecular knot with optical tweezers. Nature 399, 446–448.

    CAS  PubMed  Google Scholar 

  • Arsuaga J., Vazquez M., Trigueros S., Sumners de W., and Roca J. (2002). Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99, 5373–5377.

    CAS  PubMed  Google Scholar 

  • Bacolla A. and Wells R.D. (2004). Non-B DNA conformations, genomic rearrange ments, and human disease. J. Biol. Chem. 279, 47411–47414.

    CAS  PubMed  Google Scholar 

  • Baldwin G.S., Brooks N.J., Robson R.E., Wynveen A., Goldar A., Leikin S., Seddon J.M., and Kornyshev A.A. (2008) DNA double helices recognize mutual sequence homology in a protein free environment. J. Phys. Chem. B. 112, 1060–1064.

    CAS  PubMed  Google Scholar 

  • Bates A.D. and Maxwell A. (2007). Energy coupling in type II topoisomerases: why do they hydrolyze ATP? Biochemistry 46, 7929–7941.

    CAS  PubMed  Google Scholar 

  • Bednar J., Furrer P., Stasiak A., Dubochet J., Egelman E.H., and Bates A.D. (1994). The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. J. Mol. Biol. 235, 825–847.

    CAS  PubMed  Google Scholar 

  • Belova G.I., Prasad R., Kozyavkin S.A., Lake J.A., Wilson S.H., and Slesarev A.I. (2001). A type IB topoisomerase with DNA repair activities. Proc. Natl. Acad. Sci. USA. 98, 6015–6020.

    CAS  PubMed  Google Scholar 

  • Belova G.I., Prasad R., Nazimov I.V., Wilson S.H., and Slesarev A.I. (2002). The domain organization and properties of individual domains of DNA topoisomerase V, a type 1B topoisomerase with DNA repair activities. J. Biol. Chem. 277, 4959–4965.

    CAS  PubMed  Google Scholar 

  • Benham C.J. (1979). Torsional stress and local denaturation in supercoiled DNA. Proc. Natl. Acad. Sci. USA 76, 3870–3874.

    CAS  PubMed  Google Scholar 

  • Benham C.J. (1992). Energetics of the strand separation transition in superhelical DNA. J. Mol. Biol. 225, 835–847.

    CAS  PubMed  Google Scholar 

  • Benham C.J. and Mielke S.P. (2005). DNA mechanics. Ann. Rev. Biomed. Eng. 7, 21–53.

    CAS  Google Scholar 

  • Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., and Bourne P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boles T.C., White J.H., and Cozzarelli N.R. (1990). Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213, 931–951.

    CAS  PubMed  Google Scholar 

  • Bryant Z., Stone M.D., Gore J., Smith S.B., Cozzarelli N.R., and Bustamante C. (2003). Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341.

    CAS  PubMed  Google Scholar 

  • Buck G.R. and Zechiedrich E.L. (2004). DNA disentangling by type-2 topoisomerases. J. Mol. Biol. 340, 933–939.

    CAS  PubMed  Google Scholar 

  • Burnier Y., Weber C., Flammini A., and Stasiak A. (2007). Local selection rules that can determine specific pathways of DNA unknotting by type II DNA topoisomerases. Nucleic Acids Res. 35, 5223–5231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante C., Bryant Z., and Smith S.B. (2003). Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427.

    PubMed  Google Scholar 

  • Bustamante C., Marko J.F., Siggia E.D., and Smith S. (1994). Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600.

    CAS  PubMed  Google Scholar 

  • Calladine C.R. and Drew H.R. (1984) A base-centred explanation of the B-to-A transition in DNA. J. Mol. Biol. 178, 773–782.

    CAS  PubMed  Google Scholar 

  • Camilloni G., Di Martino E., Caserta M., and di Mauro E. (1988). Eukaryotic DNA topoisomerase I reaction is topology dependent. Nucleic Acids Res. 14, 7071–7085.

    Google Scholar 

  • Camilloni G., Martino E., Di Mauro E., and Caserta M. (1989). Regulation of the function of eukaryotic DNA topoisomerase I: topological conditions for inactivity. Proc. Natl. Acad. Sci. USA 86, 3080–3084.

    CAS  PubMed  Google Scholar 

  • Champoux J.J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413.

    CAS  PubMed  Google Scholar 

  • Champoux J.J. (2002). Type IA DNA topoisomerases: strictly one step at a time. Proc. Natl. Acad. Sci. USA. 99, 11998–12000.

    CAS  PubMed  Google Scholar 

  • Changela A., DiGate R.J., and Mondragon A. (2001). Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule. Nature 411, 1077–1081.

    CAS  PubMed  Google Scholar 

  • Charvin G., Bensimon D., and Croquette V. (2003). Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 9820–9825.

    CAS  PubMed  Google Scholar 

  • Charvin G., Strick T.R., Bensimon D., and Croquette V. (2005a). Topoisomerase IV bends and overtwists DNA upon binding. Biophys. J. 89, 384–392.

    Google Scholar 

  • Charvin G., Strick T.R., Bensimon D., and Croquette V. (2005b). Tracking topoisomerase activity at the single-molecule level. Ann. Rev. Biophys. Biomol. Struct. 34, 201–219.

    Google Scholar 

  • Cherny D.I. and Jovin T.M. (2001). Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J. Mol. Biol. 313, 295–307.

    CAS  PubMed  Google Scholar 

  • Cloutier T.E. and Widom J. (2004). Spontaneous sharp bending of double-stranded DNA. Mol. Cell 14, 355–362.

    CAS  PubMed  Google Scholar 

  • Cloutier T.E. and Widom J. (2005). DNA twisting flexibility and the formation of sharply looped protein-DNA complexes. Proc. Natl. Acad. Sci. USA 102, 3645–3650.

    CAS  PubMed  Google Scholar 

  • Corbett K.D. and Berger J.M. (2004). Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Ann. Rev. Biophys. Biomol. Struct. 33, 95–118.

    CAS  Google Scholar 

  • Corbett K.D., Schoeffler A.J., Thomsen N.D., and Berger J.M. (2005). The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561.

    CAS  PubMed  Google Scholar 

  • Corbett K.D., Shultzaberger R.K., and Berger J.M. (2004). The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proc. Natl. Acad. Sci. USA 101, 7293–7298.

    CAS  PubMed  Google Scholar 

  • Cozzarelli N.R., Boles T.C., and White J.H. (1990). Primer on the topology and geometry of DNA supercoiling. In DNA topology and its biological effects. Cozzarelli N.R. and Wang, J.C. (eds.) Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Crick F.H. and Klug A. (1975). Kinky helix. Nature 255, 530–533.

    CAS  PubMed  Google Scholar 

  • Crisona N.J. and Cozzarelli N.R. (2006). Alteration of Escherichia coli topoisomerase IV conformation upon enzyme binding to positively supercoiled DNA. J. Biol. Chem. 281, 18927–18932.

    CAS  PubMed  Google Scholar 

  • Crisona N.J., Strick T.R., Bensimon D., Croquette V., and Cozzarelli N.R. (2000). Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crooke E., Hwang D.S., Skarstad K., Thony B., and Kornberg A. (1991). E. coli minichromosome replication: regulation of initiation at oriC. Res. Microbiol. 142, 127–130.

    CAS  PubMed  Google Scholar 

  • Crothers D.M., Drak J., Kahn J.D., and Levene S.D. (1992). DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods Enzymol. 212, 3–29.

    CAS  Google Scholar 

  • Czapla L., Swigon D. and Olson W.K. (2006) Sequence-Dependent Effects in the Cyclization of Short DNA. J. Chem. Theory Comput. 2, 685–695.

    CAS  PubMed  Google Scholar 

  • Deibler R.W., Mann J.K., Sumners D.W.L., and Zechiedrich L. (2007). Hinmediated DNA knotting and recombination promote replicon dysfunction and mutation. BMC Mol. Biol. 8, 44

    PubMed  PubMed Central  Google Scholar 

  • Dekker N.H., Rybenkov V.V., Duguet M., Crisona N.J., Cozzarelli N.R., Bensimon D., and Croquette V. (2002). The mechanism of type IA topoisomerases. Proc. Natl. Acad. Sci. USA 99, 12126–12131.

    CAS  PubMed  Google Scholar 

  • Deutsch J.M. (1988). Theoretical studies of DNA during gel electrophoresis. Science 240, 922–924.

    CAS  PubMed  Google Scholar 

  • Dickerson R.E. (1998). DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong K.C. and Berger J.M. (2007). Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450, 1201–1205.

    CAS  PubMed  Google Scholar 

  • Drake F.H., Hofmann G.A., Bartus H.F., Mattern M.R., Crooke S.T., and Mirabelli C.K. (1989). Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 28, 8154–8160.

    CAS  PubMed  Google Scholar 

  • Du Q., Kotlyar A., and Vologodskii A. (2008). Kinking the double helix by bending deformation. Nucleic Acids Res. 36, 1120–1128.

    CAS  PubMed  Google Scholar 

  • Du Q., Smith C., Shiffeldrim N., Vologodskaia M., and Vologodskii A. (2005). Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc. Natl. Acad. Sci. USA 102, 5397–5402.

    CAS  PubMed  Google Scholar 

  • Dunaway M. and Dröge P. (1989). Transactivation of the Xenopus rRNA gene promoter by its enhancer. Nature 341, 657–659.

    CAS  PubMed  Google Scholar 

  • Drlica K., Malik M., Kerns R.J., Zhao X. (2008) Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52, 385–392.

    CAS  PubMed  Google Scholar 

  • Embleton M.L., Vologodskii A.V., and Halford S.E. (2004). Dynamics of DNA loop capture by the SfiI restriction endonuclease on supercoiled and relaxed DNA. J. Mol. Biol. 339, 53–66.

    CAS  PubMed  Google Scholar 

  • Fogg J.M., Kolmakova N., Rees I., Magonov S., Hansma H., Perona J.J., and Zechiedrich E.L. (2006). Exploring writhe in supercoiled minicircle DNA. J. Phys: Condens. Matter 18, S145–S159.

    CAS  Google Scholar 

  • Forterre P. (2006) DNA topoisomerase V: a new fold of mysterious origin. Trends Biotechnol. 24, 245–247.

    CAS  PubMed  Google Scholar 

  • Forterre P., Gribaldo S., Gadelle D., and Serre M.C. (2007) Origin and evolution of DNA topoisomerases. Biochimie. 89, 427–446.

    CAS  PubMed  Google Scholar 

  • Fujimoto B.S. and Schurr J.M. (1990). Dependence of the torsional rigidity of DNA on base composition. Nature 344, 175–178.

    CAS  PubMed  Google Scholar 

  • Fuller F.B. (1971). The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68, 815–819.

    CAS  PubMed  Google Scholar 

  • Fuller F.B. (1978). Decomposition of the linking of a closed ribbon: A problem of molecular biology. Proc. Natl. Acad. Sci. USA 75, 3557–3561.

    CAS  PubMed  Google Scholar 

  • Gellert M., Mizuuchi K., O’Dea M.H., and Nash H.A. (1976). DNA gyrase: An enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872–3876.

    CAS  PubMed  Google Scholar 

  • Gore J., Bryant Z., Nollmann M., Le M.U., Cozzarelli N.R., and Bustamante C. (2006). DNA overwinds when stretched. Nature 442, 836–839.

    CAS  PubMed  Google Scholar 

  • Gorin A.A, Zhurkin V.B., and Olson W.K. (1995) B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 247, 34–48.

    CAS  PubMed  Google Scholar 

  • Gowers D.M. and Halford S.E. (2003). Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. EMBO J. 22, 1410–1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grue P., Grasser A., Sehested M., Jensen P.B., Uhse A., Straub T., Ness W., and Boege F. (1998). Essential mitotic functions of DNA topoisomerase IIalpha are not adopted by topoisomerase IIbeta in human H69 cells. J. Biol. Chem. 273, 33660–33666.

    CAS  PubMed  Google Scholar 

  • Hagerman P.J. (1988). Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem. 17, 265–286.

    CAS  Google Scholar 

  • Harris S.A., Laughton C.A., and Liverpool T.B. (2008). Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations. Nucleic Acids Res. 36, 21–29.

    CAS  PubMed  Google Scholar 

  • Harris S.A., Sands Z.A., and Laughton C.A. (2005). Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA. Biophys. J. 88, 1684–1691.

    CAS  PubMed  Google Scholar 

  • Heath P.J., Clendenning J.B., Fujimoto B.S., and Schurr J.M. (1996). Effect of bending strain on the torsion elastic constant of DNA. J. Mol. Biol. 260, 718–730.

    CAS  PubMed  Google Scholar 

  • Heck M.M. and Earnshaw W.C. (1986). Topoisomerase II: A specific marker for cell proliferation. J. Cell. Biol. 103, 2569–2581.

    CAS  PubMed  Google Scholar 

  • Hiasa H. and Marians K.J. (1996). Two distinct modes of topological processing during theta-type DNA replication. J. Biol. Chem. 271, 21529–21535.

    CAS  PubMed  Google Scholar 

  • Hiasa H., Yousef D.O., and Marians K.J. (1996). DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J. Biol. Chem. 271, 26424–26429.

    CAS  PubMed  Google Scholar 

  • Hiller D.A., Rodriguez A.M., Perona J.J. Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC. J. Mol. Biol. 354, 121–136.

    Google Scholar 

  • Higgins N.P. and Cozzarelli N.R. (1982). The binding of gyrase to DNA: analysis by retention by nitrocellulose filters. Nucleic Acids Res. 10, 6833–6847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfield J.J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139.

    CAS  PubMed  Google Scholar 

  • Horowitz D.S. and Wang J.C. (1984). Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J. Mol. Biol. 173, 75–91.

    CAS  PubMed  Google Scholar 

  • Keller W. and Wendel I. (1975). Stepwise relaxation of supercoiled SV40 DNA. Cold Spring Harbor Symposia on Quantitative Biology 39 (Part 1), 199–208.

    PubMed  Google Scholar 

  • Kikuchi A. and Asai K. (1984). Reverse gyrase–a topoisomerase which introduces positive superhelical turns into DNA. Nature 309, 677–681.

    CAS  PubMed  Google Scholar 

  • Kim J.L., Nikolov D.B., and Burley S.K. (1993a). Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527.

    Google Scholar 

  • Kim Y., Geiger J.H., Hahn S., and Sigler P.B. (1993b). Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520.

    Google Scholar 

  • Kirkegaard K. and Wang J.C. (1985). Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J. Mol. Biol. 185, 625–637.

    CAS  PubMed  Google Scholar 

  • Klenin K. and Langowski J. (2000). Computation of writhe in modeling of supercoiled DNA. Biopolymers 54, 307–317.

    CAS  PubMed  Google Scholar 

  • Klenin K., Langowski J., and Vologodskii A.V. (2002). Computational analysis of the chiral action of type II DNA topoisomerases. J. Mol. Biol. 320, 359–367.

    CAS  PubMed  Google Scholar 

  • Kondapi A.K., Mulpuri N., Mandraju R.K., Sasikaran B., and Subba Rao K. (2004) Analysis of age dependent changes of Topoisomerase II alpha and beta in rat brain. Int. J. Dev. Neurosci. 22, 19–30.

    CAS  PubMed  Google Scholar 

  • Koster D.A., Croquette V., Dekker C., Shuman S., and Dekker N.H. (2005). Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434, 671–674.

    CAS  PubMed  Google Scholar 

  • Koster D.A., Palle K., Bot E.S., Bjornsti M.A., Dekker N.H. (2007). Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature. 448, 213–217.

    CAS  PubMed  Google Scholar 

  • Kramer P.R. and Sinden, R.R. (1997). Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry 36, 3151–3158.

    CAS  PubMed  Google Scholar 

  • Kreuzer K.N. and Alberts B.M. (1984). Site-specific recognition of bacteriophage T4 DNA by T4 type II DNA topoisomerase and Escherichia coli DNA gyrase. J. Biol. Chem. 259, 5339–5346.

    CAS  PubMed  Google Scholar 

  • Kreuzer K.N. and Cozzarelli N.R. (1979). Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth. J. Bacteriol. 140, 424–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh S., Mortensen U.H., Westergaard O., and Bonven B.J. (1991). Eukaryotic topoisomerase I-DNA interaction is stabilized by helix curvature. Nucleic Acids Res. 19, 1235–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaMarr W.A., Sandman K.M., Reeve J.N., and Dedon P.C. (1997). Large scale preparation of positively supercoiled DNA using the archaeal histone HMf. Nucleic Acids Res. 25, 1660–1661.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lankas F., Lavery R., and Maddocks J.H. (2006). Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure 14, 1527–1534.

    CAS  PubMed  Google Scholar 

  • Lee M.P., Sander M., and Hsieh T. (1989). Nuclease protection by Drosophila DNA topoisomerase II. Enzyme/DNA contacts at the strong topoisomerase II cleavage sites. J. Biol. Chem. 264, 21779–21787.

    CAS  PubMed  Google Scholar 

  • Leppard J.B. and Champoux J.J. (2005). Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85.

    CAS  PubMed  Google Scholar 

  • Levene S.D. and Crothers D.M. (1986). Topological distributions and the torsional rigidity of DNA. A Monte Carlo study of DNA circles. J. Mol. Biol. 189, 73–83.

    CAS  PubMed  Google Scholar 

  • Levitt M. (1983) Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol. 170, 723–764.

    CAS  PubMed  Google Scholar 

  • Lewis M., Chang G., Horton N.C., Kercher M.A., Pace H.C., Schumacher M.A., Brennan R.G., and Lu P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271, 1247–1254.

    CAS  PubMed  Google Scholar 

  • Lima C.D., Wang J.C., and Mondragon A. (1994). Three-dimensional structure of the 67 K N-terminal fragment of E. coli DNA topoisomerase I. Nature 367, 138–146.

    CAS  PubMed  Google Scholar 

  • Lionnet T., Joubaud S., Lavery R., Bensimon D., and Croquette V. (2006). Wringing out DNA. Phys. Rev. Lett. 96, 178102.

    PubMed  Google Scholar 

  • Liu C.C., Burke R.L., Hibner U., Barry J., and Alberts B. (1979a). Probing DNA replication mechanisms with the T4 bacteriophage in vitro system. Cold Spring Harbor Symposia on Quantitative Biology 43 (Part 1), 469–487.

    Google Scholar 

  • Liu D.J. and Day L.A. (1994). Pf1 virus structure: helical coat protein and DNA with paraxial phosphates. Science 265, 671–674.

    CAS  PubMed  Google Scholar 

  • Liu L.F., Liu C.C., and Alberts B.M. (1979b). T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature 281, 456–461.

    Google Scholar 

  • Liu L.F. and Wang J.C. (1978). DNA-DNA gyrase complex: the wrapping of the DNA duplex outside the enzyme. Cell 15, 979–984.

    CAS  Google Scholar 

  • Liu L.F. and Wang J.C. (1987). Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 84, 7024–7027.

    CAS  PubMed  Google Scholar 

  • Liu Z., Mann J.K., Zechiedrich E.L., and Chan H.S. (2006a). Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases. J. Mol. Biol. 361, 268–285.

    Google Scholar 

  • Liu Z., Zechiedrich E.L., and Chan H.S. (2006b). Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophys. J. 90, 2344–2355.

    Google Scholar 

  • Liu Z., Deibler R.W., Chan H.S., and Zechiedrich (2008). Hooked on DNA: the why and how of DNA untangling. Nucleic Acids Res. in press.

    Google Scholar 

  • Liverpool T.B., Harris S.A., and Laughton C.A. (2008). Supercoiling and denaturation of DNA loops. Phys. Rev. Lett. 100, 238103.

    CAS  PubMed  Google Scholar 

  • Lockshon D. and Morris D.R. (1983). Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors. Nucleic Acids Res. 11, 2999–3017.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K., Mader A.W., Richmond R.K., Sargent D.F., and Richmond T.J. (1997). Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389, 251–260.

    CAS  Google Scholar 

  • Lyubchenko Y.L. (2004). DNA structure and dynamics: an atomic force microscopy study. Cell Biochem. Biophys. 41, 75–98.

    CAS  PubMed  Google Scholar 

  • Madden K.R., Stewart L., and Champoux J.J. (1995). Preferential binding of human topoisomerase I to superhelical DNA. EMBO J. 14, 5399–5409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maher L.J., 3rd (1998). Mechanisms of DNA bending. Current Opin. Chem. Biol. 2, 688–694.

    CAS  Google Scholar 

  • Maher L.J., 3rd (2006). DNA kinks available…if needed. Structure 14, 1479–1480.

    CAS  PubMed  Google Scholar 

  • Manning G.S. (1969a). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 51, 924–933.

    Google Scholar 

  • Manning G.S. (1969b). Limiting laws and counterion condensation in polyelectrolyte solutions. II. Self-diffusion of the small ions. J. Chem. Phys. 51, 934–938.

    Google Scholar 

  • Marko J.F. and Siggia E.D. (1994). Bending and Twisting Elasticity of DNA. Macromolecules 27, 981–988.

    CAS  Google Scholar 

  • Martincic D. and Hande K.R. (2005). Topoisomerase II inhibitors. Cancer Chemother. Biol. Response Modif. 22, 101–121.

    CAS  PubMed  Google Scholar 

  • Marvin D.A., Spencer M., Wilkins M.H., and Hamilton L.D. (1958) A new configuration of deoxyribonucleic acid. Nature 182, 387–388.

    CAS  PubMed  Google Scholar 

  • McClellan J.A. and Lilley D.M. (1991). Structural alteration in alternating adenine-thymine sequences in positively supercoiled DNA. J. Mol. Biol. 219, 145–149.

    CAS  PubMed  Google Scholar 

  • McClendon A.K., Dickey J.S., and Osheroff N. (2006a). The geometry of DNA supercoils modulates topoisomerase-mediated DNA cleavage and enzyme response to anticancer drugs. Biochemistry. 45, 3040–3050.

    Google Scholar 

  • McClendon A.K., Dickey J.S., and Osheroff N. (2006b). Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 45, 11674–11680.

    Google Scholar 

  • McClendon A.K. and Osheroff N. (2007). DNA topoisomerase II, genotoxicity, and cancer. Mut. Res. 623, 83–97.

    CAS  Google Scholar 

  • McClendon A.K., Rodriguez A.C., and Osheroff N. (2005). Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J. Biol. Chem. 280, 39337–39345.

    CAS  PubMed  Google Scholar 

  • Mizuuchi K., Gellert M., and Nash H.A. (1978). Involvement of supertwisted DNA in integrative recombination of bacteriophage lambda. J. Mol. Biol. 121, 375–392.

    CAS  PubMed  Google Scholar 

  • Mondragon A. and DiGate R. (1999). The structure of Escherichia coli DNA topoisomerase III. Structure 7, 1373–1383.

    CAS  PubMed  Google Scholar 

  • Muller M.T. (1985). Quantitation of eukaryotic topoisomerase I reactivity with DNA. Preferential cleavage of supercoiled DNA. Biochim. Biophys. Acta 824, 263–267.

    CAS  PubMed  Google Scholar 

  • Musgrave D., Zhang X., and Dinger M. (2002). Archaeal genome organization and stress responses: implications for the origin and evolution of cellular life. Astrobiology 2, 241–253.

    CAS  PubMed  Google Scholar 

  • Musgrave D.R., Sandman K.M., and Reeve J.N. (1991). DNA binding by the archaeal histone HMf results in positive supercoiling. Proc. Natl. Acad. Sci. USA 88, 10397–10401.

    CAS  PubMed  Google Scholar 

  • Ninio J. (1975). Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595.

    CAS  PubMed  Google Scholar 

  • Nitiss J.L. (1998). Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta. 1400, 63–81.

    CAS  PubMed  Google Scholar 

  • Nöllmann M., Crisona N.J., and Arimondo P.B. (2007). Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism. Biochimie 89, 490–499.

    PubMed  Google Scholar 

  • Nunes-Duby S.E., Smith-Mungo L.I., and Landy A. (1995). Single base-pair precision and structural rigidity in a small IHF-induced DNA loop. J. Mol. Biol. 253, 228–242.

    CAS  PubMed  Google Scholar 

  • Olson W.K. (1996). Simulating DNA at low resolution. Current Opin. Struct. Biol. 6, 242–256.

    CAS  Google Scholar 

  • Olson W.K., Gorin A.A., Lu X.J., Hock L.M., and Zhurkin V.B. (1998). DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA 95, 11163–11168.

    CAS  PubMed  Google Scholar 

  • Osheroff N. (1986). Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. 261, 9944–9950.

    CAS  PubMed  Google Scholar 

  • Osheroff N. (1987). Role of the divalent cation in topoisomerase II mediated reactions. Biochemistry 26, 6402–6406.

    CAS  PubMed  Google Scholar 

  • Osheroff N., Shelton E.R., and Brutlag D.L. (1983). DNA topoisomerase II from Drosophila melanogaster. Relaxation of supercoiled DNA. J. Biol. Chem 258, 9536–9543.

    CAS  PubMed  Google Scholar 

  • Osheroff N. and Zechiedrich E.L. (1987). Calcium-promoted DNA cleavage by eukaryotic topoisomerase II: Trapping the covalent enzyme-DNA complex in an active form. Biochemistry 26, 4303–4309.

    CAS  PubMed  Google Scholar 

  • Pack G.R., Wong L., and Lamm G. (1999). Divalent cations and the electrostatic potential around DNA: Monte Carlo and Poisson-Boltzmann calculations. Biopolymers 49, 575–590.

    CAS  PubMed  Google Scholar 

  • Parvin J.D., McCormick R.J., Sharp P.A., and Fisher D.E. (1995). Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 373, 724–727.

    CAS  PubMed  Google Scholar 

  • Pauling L. and Corey R.B. (1953). A proposed structure for the nucleic acids. Proc. Natl. Acad. Sci. USA 39, 84–97.

    CAS  PubMed  Google Scholar 

  • Pavlicek J.W., Oussatcheva E.A., Sinden R.R., Potaman V.N., Sankey O.F., and Lyubchenko Y.L. (2004). Supercoiling-induced DNA bending. Biochemistry 43, 10664–10668.

    CAS  PubMed  Google Scholar 

  • Peng H. and Marians K. (1995). The interaction of Escherichia coli topoisomerase IV with DNA. J. Biol. Chem. 270, 25286–25290.

    CAS  PubMed  Google Scholar 

  • Pérez A., Lankas F., Luque F.J., Orozco M. (2008) Towards a molecular dynamics consensus view of B-DNA flexibility. Nucleic Acids Res. 36, 2379–2394.

    PubMed  PubMed Central  Google Scholar 

  • Perry K. and Mondragon A. (2003). Structure of a complex between E. coli DNA topoisomerase I and single-stranded DNA. Structure 11, 1349–1358.

    CAS  PubMed  Google Scholar 

  • Pohl W.F. and Roberts G.W. (1978). Topological considerations in the theory of replication of DNA. J. Math. Biol. 6, 383–402.

    CAS  PubMed  Google Scholar 

  • Pommier Y. (2006). Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802.

    CAS  PubMed  Google Scholar 

  • Portugal J. and Rodriguez-Campos A. (1996). T7 RNA polymerase cannot transcribe through a highly knotted DNA template. Nucleic Acids Res. 24, 4890–4894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randall G.L., Pettitt B.M., Buck G., and Zechiedrich E.L. (2006). Electrostatics of DNA-DNA juxtapositions: consequences for type II topoisomerase function. J. Phys: Condens. Matter 18, S173–S185.

    CAS  Google Scholar 

  • Redinbo M.R., Champoux J.J., and Hol W.G. (2000). Novel insights into catalytic mechanism from a crystal structure of human topoisomerase I in complex with DNA. Biochemistry 39, 6832–6840.

    CAS  PubMed  Google Scholar 

  • Redinbo M.R., Stewart L., Champoux J.J., and Hol W.G. (1999). Structural flexibility in human topoisomerase I revealed in multiple non-isomorphous crystal structures. J. Mol. Biol. 292, 685–696.

    CAS  PubMed  Google Scholar 

  • Redinbo M.R., Stewart L., Kuhn P., Champoux J.J., and Hol W.G. (1998). Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279, 1504–1513.

    CAS  PubMed  Google Scholar 

  • Reeve J.N., Sandman K., and Daniels C.J. (1997). Archaeal histones, nucleosomes, and transcription initiation. Cell 89, 999–1002.

    CAS  PubMed  Google Scholar 

  • Rice P.A., Yang S., Mizuuchi K., and Nash H.A. (1996). Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306.

    CAS  PubMed  Google Scholar 

  • Richet E., Abcarian P., and Nash H.A. (1986). The interaction of recombination proteins with supercoiled DNA: defining the role of supercoiling in lambda integrative recombination. Cell 46, 1011–1021.

    CAS  PubMed  Google Scholar 

  • Rodley G.A., Scobie R.S., Bates R.H.T., and Lewitt R.M. (1976) A possible conformation for double-stranded polynucleotides. Proc. Natl. Acad. Sci. USA. 73, 2929–2963.

    Google Scholar 

  • Rodriguez-Campos A. (1996). DNA knotting abolishes in vitro chromatin assembly. J. Biol. Chem. 271, 14150–14155.

    CAS  PubMed  Google Scholar 

  • Rodriguez A.C. (2002). Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional “latch” in the mechanism of reverse gyrase. J. Biol. Chem. 277, 29865–29873.

    CAS  PubMed  Google Scholar 

  • Rybenkov V.V., Ullsperger C., Vologodskii A.V., and Cozzarelli N.R. (1997a). Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–693.

    Google Scholar 

  • Rybenkov V.V., Vologodskii A.V., and Cozzarelli N.R. (1997b). The effect of ionic conditions on DNA helical repeat, effective diameter, and free energy of supercoiling. Nucleic Acids Res. 25, 1412–1418.

    Google Scholar 

  • Saitta A.M., Soper P.D., Wasserman E., and Klein M.L. (1999). Influence of a knot on the strength of a polymer strand. Nature 399, 46–48.

    CAS  PubMed  Google Scholar 

  • Schoeffler A.J. and Berger J.M. (2005). Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochem. Soc. Trans. 33, 1465–1470.

    CAS  PubMed  Google Scholar 

  • Schoeffler A.J. and Berger J.M. (2008). DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Quart. Rev. Biophys. 41, 41–101.

    CAS  Google Scholar 

  • Schvartzman J.B. and Stasiak A. (2004). A topological view of the replicon. EMBO Rep. 5, 256–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selvin P.R., Cook D.N., Pon N.G., Bauer W.R., Klein M.P., and Hearst J.E. (1992). Torsional rigidity of positively and negatively supercoiled DNA. Science 255, 82–85.

    CAS  PubMed  Google Scholar 

  • Shore D. and Baldwin R.L. (1983a). Energetics of DNA twisting. I. Relation between twist and cyclization probability. J. Mol. Biol. 170, 957–981.

    Google Scholar 

  • Shore D. and Baldwin R.L. (1983b). Energetics of DNA twisting. II. Topoisomer analysis. J. Mol. Biol. 170, 983–1007.

    Google Scholar 

  • Shore D., Langowski J., and Baldwin R.L. (1981). DNA flexibility studied by covalent closure of short fragments into circles. Proc. Natl. Acad. Sci USA 78, 4833–4837.

    CAS  PubMed  Google Scholar 

  • Sikorav J.L. and Jannink G. (1994). Kinetics of chromosome condensation in the presence of topoisomerases: a phantom chain model. Biophys. J. 66, 827–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith S.B., Finzi L., and Bustamante C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126.

    CAS  PubMed  Google Scholar 

  • Snounou G. and Malcom A.D. (1983). Production of positively supercoiled DNA by netropsin. J. Mol. Biol. 167, 211–216.

    CAS  PubMed  Google Scholar 

  • Sperrazza J.M., Register J.C. 3rd., and Griffith J. (1984). Electron microscopy can be used to measure DNA supertwisting. Gene 31, 17–22.

    CAS  PubMed  Google Scholar 

  • Stewart L., Redinbo M.R., Qiu X., Hol W.G., and Champoux J.J. (1998). A model for the mechanism of human topoisomerase I. Science 279, 1534–1541.

    CAS  PubMed  Google Scholar 

  • Stivers J.T., Harris T.K., and Mildvan A.S. (1997). Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoil relaxation. Biochemistry 36, 5212–5222.

    CAS  PubMed  Google Scholar 

  • Stone M.D., Bryant Z., Crisona N.J., Smith S.B., Vologodskii A., Bustamante C., and Cozzarelli N.R. (2003). Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 8654–8659.

    CAS  PubMed  Google Scholar 

  • Strick T.R., Allemand J.F., Bensimon D., Bensimon A., and Croquette V. (1996). The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837.

    CAS  PubMed  Google Scholar 

  • Strick T.R., Allemand J.F., Bensimon D., and Croquette V. (1998). Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strick T.R., Allemand J.F., Bensimon D., and Croquette V. (2000a). Stress-induced structural transitions in DNA and proteins. Ann. Rev. Biophys. Biomol. Struct. 29, 523–543.

    Google Scholar 

  • Strick T.R., Bensimon D., and Croquette V. (1999). Micro-mechanical measurement of the torsional modulus of DNA. Genetica 106, 57–62.

    CAS  PubMed  Google Scholar 

  • Strick T.R., Croquette V., and Bensimon D. (2000b). Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904.

    Google Scholar 

  • Svozil D., Sponer J.E., Marchan I., Pérez A., Cheatham T.E. 3rd, Forti. F., Luque F.J., Orozco M., Sponer J. (2008) Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. J. Phys. Chem. B 112, 8188–8197.

    CAS  PubMed  Google Scholar 

  • Taneja B., Patel A., Slesarev A., Mondragón A. (2006) Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases. EMBO J. 25, 398–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taneja B., Schnurr B., Slesarev A., Marko J.F., Mondragón A. (2007) Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism. Proc. Natl. Acad. Sci. USA. 104, 14670–14675.

    CAS  PubMed  Google Scholar 

  • Terry B.J., Jack W.E., and Modrich P. (1985). Facilitated diffusion during catalysis by EcoRI endonuclease. Nonspecific interactions in EcoRI catalysis. J. Biol. Chem. 260, 13130–13137.

    CAS  PubMed  Google Scholar 

  • Thomsen B., Bendixen C., Lund K., Andersen A.H., Sorensen B.S., and Westergaard O. (1990). Characterization of the interaction between topoisomerase II and DNA by transcriptional footprinting. J. Mol. Biol. 215, 237–244.

    CAS  PubMed  Google Scholar 

  • Timsit Y., Duplantier B., Jannink G., and Sikoravq J.-L. (1998). Symmetry and chirality in topoisomerases II-DNA crossover recognition. J. Mol. Biol. 284, 1289–1299.

    CAS  PubMed  Google Scholar 

  • Timsit Y. and Moras D. (1994). DNA self-fitting: the double helix directs the geometry of its supramolecular assembly. EMBO J. 13, 2737–2746.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timsit Y., Shatzky-Schwartz M., and Shakked Z. (1999). Left-handed DNA crossovers. Implications for DNA-DNA recognition and structural alterations. J. Biomol. Struct. Dyn. 16, 775–785.

    CAS  PubMed  Google Scholar 

  • Tolstorukov M.Y., Colasanti A.V., McCandlish D.M., Olson W.K., Zhurkin V.B. (2007) A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. J. Mol. Biol. 371, 725–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Travers A. and Muskhelishvili G. (2005). DNA supercoiling - a global transcriptional regulator for enterobacterial growth? Nat. Rev. Microbiol. 3, 157–169.

    CAS  PubMed  Google Scholar 

  • Trigueros S., Salceda J., Bermudez I., Fernandez X., and Roca J. (2004). Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology. J. Mol. Biol. 335, 723–731.

    CAS  PubMed  Google Scholar 

  • Ullsperger C. and Cozzarelli N.R. (1996). Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271, 31549–31555.

    CAS  PubMed  Google Scholar 

  • Vinograd J. and Lebowitz J. (1966). Physical and topological properties of circular DNA. J. Gen. Physiol. 49, 103–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinograd J., Lebowitz J., Radloff R., Watson R., and Laipis P. (1965). The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. USA 53, 1104–1111.

    CAS  PubMed  Google Scholar 

  • Vologodskii A.V. and Cozzarelli N.R. (1996). Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70, 2548–2556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vologodskii A.V., Levene S.D., Klenin K.V., Frank-Kamenetskii M., and Cozzarelli N.R. (1992). Conformational and thermodynamic properties of supercoiled DNA. J. Mol. Biol. 227, 1224–1243.

    CAS  PubMed  Google Scholar 

  • Vologodskii A.V., Lukashin A.V., Anshelevich V.V., and Frank-Kamenetskii M.D. (1979). Fluctuations in superhelical DNA. Nucleic Acids Res. 6, 967–982.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vologodskii A.V., Zhang W., Rybenkov V.V., Podtelezhnikov A.A., Subramanian D., Griffith J.D., and Cozzarelli N.R. (2001). Mechanism of topology simplification by type II DNA topoisomerases. Proc. Natl. Acad. Sci. USA 98, 3045–3049.

    CAS  PubMed  Google Scholar 

  • von Hippel P.H. (2007). From “simple” DNA-protein interactions to the macromolecular machines of gene expression. Ann. Rev. Biophys. Biomol. Struct. 36, 79–105.

    Google Scholar 

  • Wahle E. and Kornberg A. (1988). The partition locus of plasmid pSC101 is a specific binding site for DNA gyrase. EMBO J. 7, 1889–1895.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G. and Vasquez K.M. (2006). Non-B DNA structure-induced genetic instability. Mut. Res. 598, 103–119.

    CAS  Google Scholar 

  • Wang G. and Vasquez K.M. (2007). Z-DNA, an active element in the genome. Front. Biosci. 12, 4424–38.

    CAS  PubMed  Google Scholar 

  • Wang J.C. (1971). Interaction between DNA and an Escherichia coli protein ω. J. Mol. Biol. 55, 523–533.

    CAS  PubMed  Google Scholar 

  • Wang J.C. (1996). DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692.

    CAS  PubMed  Google Scholar 

  • Wang J.C. (2002). Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440.

    CAS  PubMed  Google Scholar 

  • Watson J.D. and Crick F.H.C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, 737–738.

    CAS  Google Scholar 

  • Weber C., Stasiak A., De Los Rios P., and Dietler G. (2006). Numerical simulation of gel electrophoresis of DNA knots in weak and strong electric fields. Biophys. J. 90, 3100–3105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells R.D. (2007). Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32, 271–278.

    CAS  PubMed  Google Scholar 

  • Wells R.D., Dere R., Hebert M.L., Napierala M., and Son L.S. (2005). Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res. 33, 3785–3798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White J.H. (1969). Self-linking and the Gauss integral in higher dimensions. Am. J. Math. 91, 693–728.

    Google Scholar 

  • Whitson P.A., Hsieh W.T., Wells R.D., and Matthews K.S. (1987). Supercoiling facilitates lac operator-repressor-pseudooperator interactions. J. Biol. Chem. 262, 4943–4946.

    CAS  PubMed  Google Scholar 

  • Wolters Kluwer Health, Pharmaceutical Audit Suite (PHAST), January to December 2006.

    Google Scholar 

  • Xu Y.C. and Bremer H. (1997). Winding of the DNA helix by divalent metal ions. Nucleic Acids Res. 25, 4067–4071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J., Magnasco M.O., and Marko J.F. (1999). A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401, 932–935.

    CAS  PubMed  Google Scholar 

  • Yan J., Magnasco M.O., and Marko J.F. (2001). Kinetic proofreading can explain the supression of supercoiling of circular DNA molecules by type-II topoisomerases. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 031909.

    CAS  PubMed  Google Scholar 

  • Yin H., Wang M.D., Svoboda K., Landick R., Block S.M., and Gelles J. (1995). Transcription against an applied force. Science 270, 1653–1657.

    CAS  PubMed  Google Scholar 

  • Zechiedrich E.L. and Cozzarelli N.R. (1995). Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9, 2859–2869.

    CAS  PubMed  Google Scholar 

  • Zechiedrich E.L., Khodursky A.B., Bachellier S., Schneider R., Chen D., Lilley D.M., and Cozzarelli N.R. (2000). Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113.

    CAS  PubMed  Google Scholar 

  • Zechiedrich E.L., Khodursky A.B., and Cozzarelli N.R. (1997). Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 11, 2580–2592.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zechiedrich E.L. and Osheroff N. (1990). Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 9, 4555–4562.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Zechiedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Fogg, J.M., Catanese, D.J., Randall, G.L., Swick, M.C., Zechiedrich, L. (2009). Differences Between Positively and Negatively Supercoiled DNA that Topoisomerases May Distinguish. In: Benham, C., Harvey, S., Olson, W., Sumners, D., Swigon, D. (eds) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and its Applications, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0670-0_5

Download citation

Publish with us

Policies and ethics