Advertisement

Consumer-Based Brain Fitness Programs

  • Elizabeth M. ZelinskiEmail author
  • Sarah E. Dalton
  • Glenn E. Smith
Chapter

Abstract

We review the evidence relating to the value of consumer-friendly ­cognitive training programs for older adults. We discuss the scientific foundation of research on transfer of training. Transfer implies improving not just what is trained but other cognitive or functional activities not directly trained. We describe the behavioral and neuroscience findings suggesting the role of brain plasticity processes on transfer. We detail the results of the IMPACT study, a double-blind, randomized, controlled clinical trial of a commercially available program that can be completed at home. Guidelines for selection of scientifically sound consumer-friendly programs are presented, highlighting what we consider important characteristics: input from scientific advisory panels, research testing transfer after use of the specific programs, including whether there is transfer in older adults, and where findings of tested programs are publicly disseminated. We discuss adherence issues in cognitive training, and conclude with a statement on the lack of evidence that consumer-friendly programs can delay or reverse dementia.

Keywords

Dual Task Cognitive Training Cognitive Reserve Brain Plasticity Active Control Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. Journal of the American Medical Association, 288, 2271–2281.PubMedCrossRefGoogle Scholar
  2. Ball, K. K., Edwards, J. D., & Ross, L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. Journal of Gerontology: Psychological Sciences, 62B(Special Issue I), 19–31.Google Scholar
  3. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological Bulletin, 128, 612–637.PubMedCrossRefGoogle Scholar
  4. Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: Are there age-related differences in plasticity of attentional control? Psychology and Aging, 20, 695–709.PubMedCrossRefGoogle Scholar
  5. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23, 765–777.Google Scholar
  6. Buschkuehl, M., Jaeggi, S. M., Hutchison, S., Perrig-Chiello, P., Däpp, C., Műller, M., et al. (2008). Impact of working memory training on memory performance in old-old adults. Psychology and Aging, 23, 743–753.PubMedCrossRefGoogle Scholar
  7. Byl, N. N., Nagarajan, S. S., & McKenzie, A. L. (2003). Effect of sensory discrimination training on structure and function in patients with focal hand dystonia: A case series. Archives of Physical Medicine and Rehabilitation, 84, 1505–1514.PubMedCrossRefGoogle Scholar
  8. Ceci, S. J., & Liker, J. (1986). A day at the races: A study of IQ, expertise, and cognitive complexity. Journal of Experimental Psychology: General, 115(3), 255–266.CrossRefGoogle Scholar
  9. Dahlin, E., Nyberg, L., Backman, L., & Stigsdotter-Neely, A. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23, 720–730.PubMedCrossRefGoogle Scholar
  10. Dahlin, E., Stigsdotter-Neely, A., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating mediated by the striatum. Science, 320, 1510–1512.PubMedCrossRefGoogle Scholar
  11. Dishman, R. K., & Buckworth, J. (1996). Increasing physical activity: A quantitative synthesis. Medicine and Science in Sports and Exercise, 28, 706–719.PubMedGoogle Scholar
  12. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & Arne, M. (2004). Neuroplasticity: Changes in gray matter induced by training. Nature, 427, 311–312.PubMedCrossRefGoogle Scholar
  13. Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büschel, C., et al. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. The Journal of Neuroscience, 26, 6314–6317.PubMedCrossRefGoogle Scholar
  14. Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192, 137–142.PubMedCrossRefGoogle Scholar
  15. Drew, B., & Walters, J. (1986). Video games: Utilization of a novel strategy to improve perceptual motor skills and cognitive functioning in the non-institutionalized elderly. Cognitive Rehabilitation, 4, 26–31.Google Scholar
  16. Dustman, R. E., Emmerson, R. Y., Seinhous, L. A., Shearer, D. E., & Dustman, T. J. (1992). The effects of videogame playing on neuropsychological performance of elderly individuals. Journal of Gerontology: Psychological Sciences, 47, 168–171.Google Scholar
  17. Edwards, J. D., Wadley, V. G., Vance, D. E., Wood, K., Roenker, D. L., & Ball, K. K. (2005). The impact of speed of processing training on cognitive and everyday performance. Aging & Mental Health, 9, 262–271.CrossRefGoogle Scholar
  18. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., et al. (2007). Training-induced functional activation changes in dual-task processing: An fMRI study. Cerebral Cortex, 17, 192–204.PubMedCrossRefGoogle Scholar
  19. Garden, S. E., Phillips, L. H., & MacPherson, S. E. (2001). Midlife aging, open-ended planning, and laboratory measures of executive function. Neuropsychology, 15, 472–482.PubMedCrossRefGoogle Scholar
  20. Hall, C. B., Lipton, R. B., Sliwinski, M., Katz, M. J., Derby, C. A., & Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73, 356–361.PubMedCrossRefGoogle Scholar
  21. Hong, S.-Y., Hughes, S., & Prohaska, T. (2008). Factors affecting exercise attendance and completion in sedentary older adults: A meta-analytic approach. Journal of Physical Activity and Health, 5, 385–397.PubMedGoogle Scholar
  22. Jennings, J. M., Webster, L. M., Kleykamp, B. A., & Dagenbach, D. (2005). Recollection training and transfer effects in older adults: Successful use of a repetition-lag procedure. Aging, Neuropsychology, and Cognition, 12, 278–298.Google Scholar
  23. Jobe, J. B., Smith, D. M., Ball, K., Tennstedt, S. L., Marsiske, M., Willis, S. L., et al. (2001). ACTIVE: A cognitive intervention trial to promote independence in older adults. Controlled Clinical Trials, 22, 453–479.PubMedCrossRefGoogle Scholar
  24. Kelmen, H. R., Thomas, C., Kennedy, G. J., & Cheng, J. (1994). Cognitive impairment and mortality in older community residents. American Journal of Public Health, 84, 1255–1260.CrossRefGoogle Scholar
  25. Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual task settings: A comparison of young and old adults. Journal of Experimental Psychology: Applied, 1, 50–76.CrossRefGoogle Scholar
  26. Kramer, A. F., Larish, J. F., Weber, T. A., & Bardell, L. (1999). Training for executive control: Task coordination strategies and aging. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 617–652). Cambridge: MIT Press.Google Scholar
  27. Li, S.-C., Huxhold, O., Smith, J., Schmiedek, F., Röcke, C., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23, 731–742.PubMedCrossRefGoogle Scholar
  28. Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S. J., & Burgess, N. (2003). Navigation expertise and the human hippocampus: A structural brain imaging analysis. Hippocampus, 13, 250–259.PubMedCrossRefGoogle Scholar
  29. Mahncke, H. W., Bronstone, A., & Merzenich, M. M. (2006). Brain plasticity and functional losses in the aged: Scientific bases for a novel intervention. Reprogramming the Brain, 157, 81–109.CrossRefGoogle Scholar
  30. Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proceedings of the National Academy of Sciences, 103, 12523–12528.CrossRefGoogle Scholar
  31. Mather, M. (2006). A review of decision-making processes: Weighing the risks and benefits of aging. In L. L. Carstensen & C. R. Hartel (Eds.), When I’m 64: Committee on aging frontiers in social psychology, personality, and adult developmental psychology (pp. 145–173). Washington, DC: National Academies Press.Google Scholar
  32. McAuley, E., Morris, K. S., Motl, R. W., Hu, L., Konopack, J. F., & Elavsky, S. (2007). Long-term follow-up of physical activity behavior in older adults. Health Psychology, 26, 375–380.PubMedCrossRefGoogle Scholar
  33. Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26, 4970–4982.PubMedCrossRefGoogle Scholar
  34. Randolph, C. (1998). Repeatable battery for the assessment of neuropsychological status. San Antonio, TX: Psychological Corporation.Google Scholar
  35. Rockwood, K. (2004). Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer’s disease. Journal of Neurology and Neurosurgical Psychiatry, 75, 677–685.CrossRefGoogle Scholar
  36. Roenker, D. L., Cissell, G. M., Ball, K. K., Wadley, V. G., & Edwards, J. D. (2003). Speed-of-processing and driving simulator training result in improved driving performance. Human Factors, 45, 218–233.PubMedCrossRefGoogle Scholar
  37. Schmidt, M. (1996). Rey auditory and verbal learning test: A handbook. Los Angeles: Western Psychological Services.Google Scholar
  38. SharpBrains. (2010). Transforming brain health with digital tools to assess, enhance, and treat cognition across the lifespan: The State of the Brain Fitness Market 2010. San Francisco: SharpBrains.Google Scholar
  39. Smith, G. E., Housen, P., Yaffe, R. R., Ruff, R., Kennison, R. F., Mahncke, H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. Journal of the American Geriatrics Society, 57, 594–603.PubMedCrossRefGoogle Scholar
  40. Smith, G. E., Peterson, R. C., Ivnik, R. J., Malec, J. F., & Tangalos, E. G. (1996). Subjective memory complaints, psychological distress, and longitudinal change in objective memory performance. Psychology and Aging, 11, 272–279.PubMedCrossRefGoogle Scholar
  41. St. John, P. D., Montgomery, P. R., Kristjansson, B., & McDowell, I. (2002). Cognitive scores, even within the normal range, predict death and institutionalization. Age and Ageing, 31, 373–378.PubMedCrossRefGoogle Scholar
  42. Turner, D. C., Robbins, T. W., Clark, L., Aron, A. R., Dowson, J., & Sahakian, B. (2003). Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology, 165, 260–269.PubMedGoogle Scholar
  43. Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36, 441–454.PubMedCrossRefGoogle Scholar
  44. Valenzuela, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. American Journal of Geriatric Psychiatry, 17, 179–187.PubMedCrossRefGoogle Scholar
  45. Wang, X., Merzenich, M. M., Sameshima, K., & Jenkins, W. M. (1995). Remodeling of hand representation in adult cortex determined by timing of tactile stimulation. Nature, 378, 71–75.PubMedCrossRefGoogle Scholar
  46. Wechsler, D. (1997). Wechsler Memory Scale-III. San Antonio: Psychological Corporation.Google Scholar
  47. Wilson, B., Cockburn, J., Baddeley, A., & Hiorns, R. (2003). The Rivermead behavioral memory test – II, supplement two. San Antonio, TX: Harcourt Assessment.Google Scholar
  48. Winocur, G., Palmer, H., Dawson, D., Binns, M. A., Bridges, K., & Stuss, D. T. (2007). Cognitive rehabilitation of the elderly: An evaluation of psychosocial factors. Journal of the International Neuropsychological Society, 13, 153–165.PubMedGoogle Scholar
  49. Xerri, C. (2008). Imprinting of idiosyncratic experience in cortical sensory maps: Neural substrates of representational remodeling and correlative perceptual changes. Behavioural Brain Research, 192, 26–41.PubMedCrossRefGoogle Scholar
  50. Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27, 455–471.PubMedGoogle Scholar
  51. Zelinski, E. M., & Gilewski, M. J. (2004). A 10-Item Rasch modeled memory self efficacy scale. Aging and Mental Health, 8, 293–306.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elizabeth M. Zelinski
    • 1
    Email author
  • Sarah E. Dalton
    • 2
  • Glenn E. Smith
    • 3
  1. 1.Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Mayo College of MedicineRochesterUSA

Personalised recommendations