Advertisement

Laboratory Measurements of Ultrasonic Wave Velocities of Crustal Rocks at High Pressures and Temperatures: Petrological Structure of Izu-Bonin-Mariana Arc Crust

  • Masahiro Ishikawa
  • Makoto Arima

Abstract

To construct petrological model for island arc crusts having relatively higher geothermal gradient, we developed experim ental techniques capable for simultaneous measurement of P- and S-wave velocities of an encapsulated rock specimen up to 1 GPa and 1000°C. In this paper we introduce our experimental methods and discuss petrological models of the Izu-Bonin-Mariana (IBM) island arc architecture. The models are constructed on the basis of our velocity measurement data at high temperatures and pressures and the seismic velocity profiles of the IBM arc crust previously reported (Suyehiro et al. 1996; Takahashi et al. 1998). These seismic velocity profiles clearly defined a stratified four-layered crustal structure for the IBM arc crust. Our ultrasonic laboratory measurements reveal that the IBM crust consists of a 5 km thick basaltic upper crust under lain by a 5 km thick tonalitic middle crust (Vp=6.2–6.3 km/s) while the lower crust consist of a 3 km thick hornblende-bearing gabbro (Vp=6.7–6.8 km/s) succeeded below by a 8 km thick pyroxenite or gabbroic rocks (Vp=7.1–7.3 km/s). The more recent seismic experiments of the IBM arc further highlighted the relatively low-velocity (Vp=7.4–7.7 km/s) domains located within the upper mantle immediately below the lower crust (Vp=7.1–7.3 km/s) (Kodaira et al. 2007a, 2007b). Seismic reflectors were observed within and near the base of these low-velocity domains. Our data suggest that the low-velocity domains probably represent mixtures of various garnet-pyroxenerich ultramafic rocks of crustal origin (restites after lower crustal anatexis and/or cumulates after magmatic differentiation) and mantle peridotites components.

Keywords

Continental Crust Lower Crust Elastic Wave Velocity Ultrasonic Wave Velocity Lower Crustal Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki K (1971) Petrology of mafic inclusions from Ichino-megata, Japan, Contributions to Mineralogy and Petrology 30: 314–331CrossRefGoogle Scholar
  2. Aizawa Y, Ito K, Tatsumi Y (2001) Experimental determination of compressional wave velocity of olivine aggregate up to 1000°C at 1 GPa. Tectonophysics 339: 473–479CrossRefGoogle Scholar
  3. Anderson OL, Schreiber E, Liebermann RC, Soga N (1968) Some elastic constant data on minerals relevant to geophysics. Rev Geophys 6: 491–524CrossRefGoogle Scholar
  4. Arai T (1987) Tectonics of Tanzawa mountains: constraints from metamorphic petrology. J Geological Society Japan 93: 185–200Google Scholar
  5. Arculus RJ (1981) Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics 75: 113–133CrossRefGoogle Scholar
  6. Birch F (1961) The velocity of compressional waves in rocks at 2–10 kbar. J Geophys Res 66: 2199–2224CrossRefGoogle Scholar
  7. Christensen NI, Fountain DM (1975) Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Bull Geolo Soc Am 86: 227–236CrossRefGoogle Scholar
  8. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res 100: 9761–9788CrossRefGoogle Scholar
  9. Condie KC (1997) Plate Tectonics and Crustal Evolution, Butter-worth-Heinemann, OxfordGoogle Scholar
  10. Davidson JP, Arculus RJ (2005) The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown M, Ruchmer T (eds) Evolution and Differentiation of the Continental Crust. Cambridge University Press, CambridgeGoogle Scholar
  11. Eggler DH, Mysen BO, Hoering TC (1974) Gas species in sealed capsules in solid-media, high pressure apparatus. Year Book 73: 228–232, Carnegie Inst, Washington DCGoogle Scholar
  12. Fliedner MM, Klemperer SL (1999) Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska. J Geophys Res 104: 10667–10694CrossRefGoogle Scholar
  13. Fliedner MM, Klemperer SL (2000) Crustal structure transition from oceanic arc to continental arc, eastern Aleutial Islands and Alaska Peninsula. Earth Planet Sci Lett 179: 567–579CrossRefGoogle Scholar
  14. Furukawa Y (1993) Magmatic processes under arc and formation of the volcanic front. J Geophys Res 98: 8309–8319CrossRefGoogle Scholar
  15. Groos AF, Heege JP (1973) The high-low quartz transition up to 10 kbars pressure. J Geology 81: 717–724CrossRefGoogle Scholar
  16. Gwanmesia GD, Rigden SM, Jackson I, Liebermann RC (1990) Pressure dependence of elastic wave velocity for β-Mg2SiO4 and the composition of the earth’s mantle. Science 250: 794–797CrossRefGoogle Scholar
  17. Higo Y, Inoue T, Li B, Irifune T, Liebermann RC (2006) The effect of iron on the elastic properties of ringwoodite at high pressure. Phys Earth Planet Inter 159: 276–285CrossRefGoogle Scholar
  18. Holbrook WS, Lizarralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27: 31–34CrossRefGoogle Scholar
  19. Irifune T, Higo Y, Inoue T, Kono Y, Ohfuji H, Funakoshi K (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451: 814–817CrossRefGoogle Scholar
  20. Ishikawa M, Kanao M (2002) Structure and collision tectonics of Pan-African orogenic belt-Scientific significance of the geotransect for a supercontinent: Gondwanaland. Bulletin of the Earthquake Research Institute, Tokyo University 77: 287–302 (in Japanese with English abstract)Google Scholar
  21. Ishikawa M, Shingai E, Arima M (2008) Elastic properties of high-grade metamorphosed igneous rocks from Enderby Land and eastern Dronning Maud Land, Antarctica: evidence for biotite-bearing mafic lower crust. In: Satish-Kumar et al. (eds) Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection. Geological Society London, Special Publications. 308: 183–194.Google Scholar
  22. Ito K, Tatsumi Y (1995) Measurement of elastic wave velocities in granulite and amphibolite having identical H2O-free bulk compositions up to 850°C at 1 GPa. Earth Planet Sci Lett 133: 255–264CrossRefGoogle Scholar
  23. Jackson I, Niesler H (1982) The elasticity of periclase to 3 GPa and some geophysical implications. In: Manghnani M, Syono Y (eds) High Pressure Research: Application to Earth and Planetary Sciences. Terra Scientific Publishing Co and American Geophysical Union, Tokyo and Washington DCGoogle Scholar
  24. Kanao M, Ishikawa M (2004) Origins of the lower crustal reflectivity in the Lutzow-Holm Complex, Enderby Land, East Antarctica. Earth Planets Space 56: 151–162Google Scholar
  25. Katsune G, Ishikawa M, Arima M (2007) Laboratory measurements of elastic wave velocities in the Tanzawa hornblende gabbro at high pressure and temperatures. Abstract of the Geological Society of Japan 114: 264 (in Japanese)Google Scholar
  26. Kawate S, Arima M (1998) Petrogenesis of the Tanzawa plutonic complex, central Japan: exposed felsic middle crust of the Izu-Bonin-Mariana arc. Island Arc 7: 342–358CrossRefGoogle Scholar
  27. Kern H, Liu B, Popp T (1997) Relationship between anisotropy of P and S-wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J Geophys Res 102: 3051–3065CrossRefGoogle Scholar
  28. Kitamura K, Ishikawa M (1998) Rock velocities at atmospheric pressure and room temperature in Tanzawa plutonic rocks from central Japan. In: Motoyoshi Y, Shiraishi K (eds) Origin and Evolution of Continents. Memoirs of National Institute of Polar Research Spec Issue 53Google Scholar
  29. Kitamura K, Ishikawa M, Arima M, Shiraishi K (2001) Laboratory measurements of P-wave velocity of granulites from Lützow-Holm Complex, East Antarctica: Preliminary report. Polar Geoscience 14: 180–194Google Scholar
  30. Kitamura K, Ishikawa M, Arima M (2003) Petrological model of the northern Izu-Bonin-Mariana arc crust: constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics 371: 213–221CrossRefGoogle Scholar
  31. Kodaira S, Sato T, Takahashi N, Ito A, Tamura Y, Tatsumi Y, Kaneda Y (2007a) Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res 112: B05104, doi: 10.1029/2006JB004593CrossRefGoogle Scholar
  32. Kodaira S, Sato T, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007b) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35: 1031–1034CrossRefGoogle Scholar
  33. Kono Y, Ishikawa M, Nakajima T, Khan S R, Arima M (2003) Strong decrease in ultrasonic Vp in lower crustal rocks at high temperature. Eos Trans. AGU 84 (46) Fall Meet Suppl Abstract F1441Google Scholar
  34. Kono Y, Ishikawa M, Arima M (2004) Discontinuous change in temperature derivative of Vp in lower crustal rocks. Geophys Res Lett 31: L22601, doi: 10.1029/2004GL020964CrossRefGoogle Scholar
  35. Kono Y, Ishikawa M, Arima M (2006) Laboratory measurements of P-and S-wave velocities in polycrystalline plagioclase and gabbronorite up to 700°C and 1 GPa: Implications for the low velocity anomaly in the lower crust. Geophys Res Lett 33: L15314, doi: 10.1029/2006GL026526CrossRefGoogle Scholar
  36. Kono Y, Ishikawa M, Arima M (2007) Effect of H2O released by dehydration of serpentine and chlorite on compressional wave velocities of peridotites at 1 GPa and up to 1000°C. Physics of the Earth and Planetary Interiors doi: 10.1016/j.pepi. 2007.02.005Google Scholar
  37. Kono Y, Miyake A, Ishikawa M, Arima M (2008) Temperature derivatives of elastic wave velocities in plagioclase (An51±1) above and below the order-disorder transition temperature. Am Mineralogist 93: 558–564CrossRefGoogle Scholar
  38. Kono Y, Ishikawa M, Harigane Y, Michibayashi K, Arima M (2008) P-and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: Implications for seismic Moho discontinuity attributed to abundant garnet (submitted)Google Scholar
  39. Kojo S, Arima M, Ishikawa M (2007) Elastic wave velocities and Poisson’s ratios of amphibolite up to 900°C at 1.0 GPa: Effect of dehydration melting on Poisson’s ratio of mid-to lower crustal rock. EOS Trans. 88 (52) MR31C-0530, 2Google Scholar
  40. Kozai Y, Arima M (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420°C and 1 GPa with controlled oxygen partial pressure. Am Mineralogist 90: 1759–1766CrossRefGoogle Scholar
  41. Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74: 5961–5972CrossRefGoogle Scholar
  42. Kung J, Li B, Uchida T, Wang Y, Neuville D, Liebermann RC (2004) In situ measurements of sound velocities and densities across the orthopyroxene->high-pressure clinopyroxene transition in MgSiO3 at high pressure. Phys Earth Planet Interiors 147: 27–44CrossRefGoogle Scholar
  43. Li B, Rigden SM, Liebermann RC (1996) Elasticity of stishovite at high pressure. Phys Earth Planet Inter 96: 113–127CrossRefGoogle Scholar
  44. Li B, Kung J, Liebermann RC (2004) Modern techniques in measuring elasticity of earth materials at high pressure and high temperature using ultrasonics in conjunction with synchrotron X-radiation. Phys Earth Planet Interiors 143–144: 559–574CrossRefGoogle Scholar
  45. Liebermann RC, Schreiber E (1968) Elastic Constants of Polycrystalline Hematite as a Function of Pressure to 3 Kilobars. J Geophys Res 73: 6585–6590CrossRefGoogle Scholar
  46. Martin H (1986) Effects of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 139: 753–756CrossRefGoogle Scholar
  47. Matsushima S (1981) Compressional and shear wave velocities of igneous rocks and volcanic glasses to 900°C and 20 kbar. Tectonophysics 75: 257–271CrossRefGoogle Scholar
  48. McSkimin HJ (1950) Ultrasonic measurement techniques applicable to small solid specimens. J Acoust Soc Am 22: 413–418CrossRefGoogle Scholar
  49. Miller DJ, Christensen NI (1994) Sersmic signature and geochemistry of an island arc: A multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J Geophys Res 99: 11623–611642CrossRefGoogle Scholar
  50. Mueller HJ, Massonne H-J (2001) Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth Part A: Solid Earth and Geodesy 26: 325–332CrossRefGoogle Scholar
  51. Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implication for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7: 359–373CrossRefGoogle Scholar
  52. Nishimoto S, Ishikawa M, Arima M, Yoshida T (2005) Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, nort-east Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics 396: 245–259CrossRefGoogle Scholar
  53. Nishimoto S, Ishikawa M, Arima M, Yoshida T, Nakajima J (2008) Simultaneous high P-T measurements of ultrasonic compressional and shear wave velocities in Ichino-megata mafic xenoliths: Their bearings on seismic velocity perturbations in lower crust of northeast Japan arc. J Geophys Res doi: 10.1029/2008JB005587, in pressGoogle Scholar
  54. Osanai Y, Owada M, Kawasaki, T (1992) Tertiary deep crustal ultrameta-morphism in the Hidaka metamorphic belt, northern Japan. J Metamor Geology 10: 401–414CrossRefGoogle Scholar
  55. Rudnick LR (1992) Xenoliths-samples of the lower continental crust. In: Fountain DM, Arculus R, Kay RW (eds) Continental Lower Crust, Elsevier, AmsterdamGoogle Scholar
  56. Rudnick LR (1995) Making continental crust. Nature 378: 571–578CrossRefGoogle Scholar
  57. Rollinson H (2005) Crustal genaration in the Arachean. In: Brown M, Ruchmer T (eds) Evolution and Differentiation of the Continental Crust, Cambridge University Press, CambridgeGoogle Scholar
  58. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: A lower crustal perspective. Review of Geophysics 33: 267–309CrossRefGoogle Scholar
  59. Saito K, Otomo I, Takai T (1991) K-Ar dating of the Tanzawa tonalitic body and some restrictions on the collision tectonics in the South Fossa Magna, central Japan. J Geomagn Geoelectr 43: 921–935CrossRefGoogle Scholar
  60. Searle MP, Khan MA Fraser JE, Gough SJ, Jan MQ (1999) The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics 18: 929–949CrossRefGoogle Scholar
  61. Shingai E, Ishikawa M, Arima M (2001) P-wave velocity in ultrahigh temperature granulites from the Archean Napier Complex, East Antarctica. Polar Geoscience 14: 165–179Google Scholar
  62. Soh W, Pickering TK, Taira A, Tokuyama H (1991) Basin evolution in the arc-arc Izu Collision Zone, Mio-Pliocene Miura Group, central Japan. J Geol Soc Lond 148: 317–330CrossRefGoogle Scholar
  63. Spetzler HA, Chen G, Whitehead S, Getting IC (1993) A new ultrasonic interferometer for the determination of equation of state parameters of sub-millimeter single crystals. In: Liebermann RC, Sondergeld CH (eds) Experimental Techniques in Mineral and Rock Physics. Pure Applied Geo Phy 141: 341–377Google Scholar
  64. Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc. Science 272: 390–392CrossRefGoogle Scholar
  65. Taira A, Pickering TK, Windley BF, Soh W (1992) Accretion of Japanese Island arcs and implications for the origin of Archean greenstone belts. Tectonics 11: 1224–1244CrossRefGoogle Scholar
  66. Taira A, Saito S, Aoike K, Morita S, Tokuyama H, Suyehiro K, Takahashi N, Shinohara M, Kiyokawa S, Naka J, Klaus A (1998) Nature and growth rate of the Northern Izu-Bonin (Ogasawara) arc crust and their implication for continental crust formation. Island Arc 7: 395–407CrossRefGoogle Scholar
  67. Takahashi N, Suyehiro K, Shinohara M (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. Island Arc 7: 383–394CrossRefGoogle Scholar
  68. Takahashi N, Kodaira S, Klemperer S, Tatsumi Y, Kaneda Y, Suyehiro K (2007) Structure and evolution of Izu-Ogasawara (Bonin) — Mariana oceanic island arc crust. Geology 35: 203–206CrossRefGoogle Scholar
  69. Takahashi N, Kodaira S, Tatsumi Y, Kaneda Y, Suyehiro K (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system. J Geophys Res 113: B01104, doi: 10.1029/2007 JB005020CrossRefGoogle Scholar
  70. Tatsumi Y, Eggins S (1995) Subduction Zone Magmatism. Blackwell Sci, BostonGoogle Scholar
  71. Tatsumi Y (2005) The subduction factory: How it operates in the evolving earth. GSA Today 15: 4–10CrossRefGoogle Scholar
  72. Tatsumi Y, Kogiso T (2003) The subduction factory: Its role in the evolution of the earth’s crust and mantle. In: Larter RD, Leat PT (eds) Geological Soc of London, Special Publication, Geologeal Society LondonGoogle Scholar
  73. Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res 113: B02203, doi: 10.1029/2007JB005121CrossRefGoogle Scholar
  74. Taylor RN (1967) The origin and growth of continents. Tectonophysics 4: 17–34CrossRefGoogle Scholar
  75. Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution, Blackwell, BostonGoogle Scholar
  76. Webb SL (1989) The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys Che Miner 16: 684–692Google Scholar
  77. Wedepohl KH (1995) The composition of the continental crust. Geochimica Cosmochimica et Acta 59: 1217–1232CrossRefGoogle Scholar
  78. Yamazaki T (1992) Heat flow in the Izu-Ogasawara (Bonin)-Mariana Arc. Bulletin of Geological Survey Japan 43: 207–235Google Scholar
  79. Yamamoto H, Yoshino T (1998) Superposition of replacements in the mafic granulites of the Jijal complex of the Kohistan arc, northern Pakistan: dehydration and rehydration within deep arc crust. Lithos 43: 219–234.CrossRefGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityHodogaya-ku, YokohamaJapan

Personalised recommendations