Functional Neuroradiology of Psychiatric Diseases

  • Paolo Nucifora


Functional neuroimaging offers a unique view of the link between brain activity and behavior – a relationship at the root of modern psychiatry. As a result, the application of blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to neuropsychiatric disorders began in earnest almost immediately after the technique was first described. As the complexity of the functional architecture of the brain has become more evident, attention has shifted from identifying centers of abnormal activation to characterizing abnormal networks, with increasing use being made of functional connectivity techniques [1]. The analysis of resting-state networks has also flourished, partly because it may sidestep a persistent challenge in the use of BOLD-fMRI in neuropsychiatric disease: selection of a paradigm that is appropriate for the clinical features of each type of mental illness. In the remainder of this chapter, recent trends in the application of functional neuroimaging to selected neuropsychiatric disorders are illustrated.


Autism Spectrum Disorder Autism Spectrum Disorder Major Depressive Disorder Diffusion Tensor Imaging Functional Connectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biswal B, Yetkin F, Haughton V, Hyde J. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.Google Scholar
  2. 2.
    Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage. 2007;34(1):61–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Redcay E, Courchesne E. When is the brain enlarged in autism? A ­meta-analysis of all brain size reports. Biol Psychiatry. 2005;58(1):1–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Frazier TW, Hardan AY. A meta-analysis of the corpus callosum in autism. Biol Psychiatry. 2009;66(10):935–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Thakkar KN, Polli FE, Joseph RM, et al. Response monitoring, repetitive behaviour and anterior cingulate abnormalities in ASD. Brain. 2008;131(Pt 9):2464–78. Epub 11 Jun 2008.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones TB, Bandettini PA, Kenworthy L, et al. Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder. Neuroimage. 2010;49(1):401–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Monk CS, Peltier SJ, Wiggins JL, et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47(2):764–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Uddin LQ, Davies MS, Scott AA, et al. Neural basis of self and other representation in autism: an FMRI study of self-face recognition. PLoS ONE. 2008;3(10):e3526.PubMedCrossRefGoogle Scholar
  9. 9.
    Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7(12):942–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP. Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry. 2009;65(1):63–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Agam Y, Joseph RM, Barton JJ, Manoach DS. Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. Neuroimage. 2010;52(1):336–47.PubMedCrossRefGoogle Scholar
  12. 12.
    Dalton KM, Nacewicz BM, Johnstone T, et al. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci. 2005;8(4):519–26.PubMedGoogle Scholar
  13. 13.
    Hall GB, Doyle KA, Goldberg J, West D, Szatmari P. Amygdala engagement in response to subthreshold presentations of anxious face stimuli in adults with autism spectrum disorders: preliminary insights. PLoS ONE. 2010;5(5):e10804.PubMedCrossRefGoogle Scholar
  14. 14.
    Rametti G, Junqué C, Falcón C, Bargalló N, Catalán R, Penadés R, et al. A voxel-based diffusion tensor imaging study of temporal white matter in patients with schizophrenia. Psychiatry Res. 2009;171(3):166–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res. 2009;108(1–3):3–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Kyriakopoulos M, Vyas NS, Barker GJ, Chitnis XA, Frangou S. A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biol Psychiatry. 2008;63(5):519–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Kanaan R, Barker G, Brammer M, Giampietro V, Shergill S, Woolley J, et al. White matter microstructure in schizophrenia: effects of disorder, duration and medication. Br J Psychiatry J Ment Sci. 2009;194(3):236–42.CrossRefGoogle Scholar
  18. 18.
    Nestor PG, Kubicki M, Niznikiewicz M, Gurrera RJ, McCarley RW, Shenton ME. Neuropsychological disturbance in schizophrenia: a diffusion tensor imaging study. Neuropsychology. 2008;22(2):246–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawashima T, Nakamura M, Bouix S, Kubicki M, Salisbury DF, Westin CF, et al. Uncinate fasciculus abnormalities in recent onset schizophrenia and affective psychosis: a diffusion tensor imaging study. Schizophr Res. 2009;110(1–3):119–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Oh J, Kubicki M, Rosenberger G, Bouix S, Levitt JG, McCarley RW, et al. Thalamo-frontal white matter alterations in chronic schizophrenia: a quantitative diffusion tractography study. Hum Brain Mapp. 2009;30(11):3812–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry. 2004;61(7):658–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Jones DK, Catani M, Pierpaoli C, Reeves SJ, Shergill SS, O’Sullivan M, et al. Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Hum Brain Mapp. 2006;27(3):230–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, et al. Activation of Heschl’s gyrus during auditory hallucinations. Neuron. 1999;22(3):615–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Shergill SS, Brammer MJ, Amaro E, Williams SC, Murray RM, McGuire PK. Temporal course of auditory hallucinations. Br J Psychiatry J Ment Sci. 2004;185:516–7.CrossRefGoogle Scholar
  25. 25.
    Hoffman RE, Anderson AW, Varanko M, Gore JC, Hampson M. Time course of regional brain activation associated with onset of auditory/verbal hallucinations. Br J Psychiatry J Ment Sci. 2008;193(5):424–5.CrossRefGoogle Scholar
  26. 26.
    Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry. 2010;67(10):912–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Gur RE, Loughead J, Kohler CG, Elliott MA, Lesko K, Ruparel K, et al. Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. Arch Gen Psychiatry. 2007;64(12):1356–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Meda SA, Stevens MC, Folley BS, Calhoun VD, Pearlson GD. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis. PLoS ONE. 2009;4(11):e7911.PubMedCrossRefGoogle Scholar
  29. 29.
    Camchong J, Macdonald AW, Bell C, Mueller BA, Lim KO. Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull. 2011;37(3):640–50.Google Scholar
  30. 30.
    Huang XQ, Lui S, Deng W, Chan RC, Wu QZ, Jiang LJ, et al. Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage. 2010;49(4):2901–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Cannistraro PA, Wright CI, Wedig MM, Martis B, Shin LM, Wilhelm S, et al. Amygdala responses to human faces in obsessive–compulsive disorder. Biol Psychiatry. 2004;56(12):916–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Yoo SY, Jang JH, Shin YW, Kim DJ, Park HJ, Moon WJ, et al. White matter abnormalities in drug-naïve patients with obsessive–compulsive disorder: a diffusion tensor study before and after citalopram treatment. Acta Psychiatr Scand. 2007;116(3):211–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Menzies L, Williams GB, Chamberlain SR, Ooi C, Fineberg N, Suckling J, et al. White matter abnormalities in patients with obsessive-compulsive disorder and their first-degree relatives. Am J Psychiatry. 2008;165(10):1308–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamae T, Narumoto J, Shibata K, Matsumoto R, Kitabayashi Y, Yoshida T, et al. Alteration of fractional anisotropy and apparent diffusion coefficient in obsessive-compulsive disorder: a diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1221–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Szeszko PR, Ardekani BA, Ashtari M, Malhotra AK, Robinson DG, Bilder RM, et al. White matter abnormalities in obsessive–compulsive disorder: a diffusion tensor imaging study. Arch Gen Psychiatry. 2005;62(7):782–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Garibotto V, Scifo P, Gorini A, Alonso CR, Brambati S, Bellodi L, et al. Disorganization of anatomical connectivity in obsessive compulsive disorder: a multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiol Dis. 2010;37(2):468–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder. Br J Psychiatry J Ment Sci. 2009;195(5):393–402.CrossRefGoogle Scholar
  39. 39.
    Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, et al. Altered corticostriatal functional connectivity in obsessive–compulsive disorder. Arch Gen Psychiatry. 2009;66(11):1189–200.PubMedCrossRefGoogle Scholar
  40. 40.
    An SK, Mataix-Cols D, Lawrence NS, Wooderson S, Giampietro V, Speckens A, et al. To discard or not to discard: the neural basis of hoarding symptoms in obsessive–compulsive disorder. Mol Psychiatry. 2009;14(3):318–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Roth RM, Saykin AJ, Flashman LA, Pixley HS, West JD, Mamourian AC. Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biol Psychiatry. 2007;62(8):901–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Page LA, Rubia K, Deeley Q, Daly E, Toal F, Mataix-Cols D, et al. A functional magnetic resonance imaging study of inhibitory ­control in obsessive-compulsive disorder. Psychiatry Res. 2009;174(3):202–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, et al. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008;321(5887):421–2.PubMedCrossRefGoogle Scholar
  44. 44.
    Zou K, Huang X, Li T, Gong Q, Li Z, Ou-yang L, et al. Alterations of white matter integrity in adults with major depressive disorder: a magnetic resonance imaging study. J Psychiatry Neurosci. 2008;33(6):525–30.PubMedGoogle Scholar
  45. 45.
    Ma N, Li L, Shu N, Liu J, Gong G, He Z, et al. White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder. Am J Psychiatry. 2007;164(5):823–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Bae JN, Macfall JR, Krishnan KR, Payne ME, Steffens DC, Taylor WD. Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol Psychiatry. 2006;60(12):1356–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Yuan Y, Zhang Z, Bai F, Yu H, Shi Y, Qian Y, et al. White matter integrity of the whole brain is disrupted in first-episode remitted geriatric depression. Neuroreport. 2007;18(17):1845–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Alexopoulos GS, Murphy CF, Gunning-Dixon FM, Latoussakis V, Kanellopoulos D, Klimstra S, et al. Microstructural white matter abnormalities and remission of geriatric depression. Am J Psychiatry. 2008;165(2):238–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Kieseppä T, Eerola M, Mäntylä R, Neuvonen T, Poutanen VP, Luoma K, et al. Major depressive disorder and white matter abnormalities: A diffusion tensor imaging study with tract-based spatial statistics. J Affect Disord. 2009;120(1–3):240–4.Google Scholar
  50. 50.
    Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010;181(1):64–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Grimm S, Beck J, Schuepbach D, Hell D, Boesiger P, Bermpohl F, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry. 2008;63(4):369–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Frodl T, Bokde AL, Scheuerecker J, Lisiecka D, Schoepf V, Hampel H, et al. Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biol Psychiatry. 2010;67(2):161–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Bluhm R, Williamson P, Lanius R, Théberge J, Densmore M, Bartha R, et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci. 2009;63(6):754–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–37.PubMedCrossRefGoogle Scholar
  55. 55.
    Schlösser RG, Wagner G, Koch K, Dahnke R, Reichenbach JR, Sauer H. Fronto-cingulate effective connectivity in major depression: a study with fMRI and dynamic causal modeling. Neuroimage. 2008;43(3):645–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Harrison BJ, Pujol J, Ortiz H, Fornito A, Pantelis C, Yücel M. Modulation of brain resting-state networks by sad mood induction. PLoS ONE. 2008;3(3):e1794.PubMedCrossRefGoogle Scholar
  57. 57.
    Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA. 2009;106(6):1942–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Kempton MJ, Geddes JR, Ettinger U, Williams SC, Grasby PM. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry. 2008;65(9):1017–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Lloyd AJ, Moore PB, Cousins DA, Thompson JM, McAllister VL, Hughes JH, et al. White matter lesions in euthymic patients with bipolar disorder. Acta Psychiatr Scand. 2009;120(6):481–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord. 2009;11(8):807–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H, et al. Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord. 2004;6(3):197–203.PubMedCrossRefGoogle Scholar
  62. 62.
    Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, Licalzi EM, et al. Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry. 2005;57(7):733–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Beyer JL, Taylor WD, MacFall JR, Kuchibhatla M, Payne ME, Provenzale JM, et al. Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology. 2005;30(12):2225–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Yurgelun-Todd DA, Silveri MM, Gruber SA, Rohan ML, Pimentel PJ. White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord. 2007;9(5):504–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Houenou J, Wessa M, Douaud G, Leboyer M, Chanraud S, Perrin M, et al. Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Mol Psychiatry. 2007;12(11):1001–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Versace A, Almeida JR, Hassel S, Walsh ND, Novelli M, Klein CR, et al. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch Gen Psychiatry. 2008;65(9):1041–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Wessa M, Houenou J, Leboyer M, Chanraud S, Poupon C, Martinot JL, et al. Microstructural white matter changes in euthymic bipolar patients: a whole-brain diffusion tensor imaging study. Bipolar Disord. 2009;11(5):504–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Macritchie KA, Lloyd AJ, Bastin ME, Vasudev K, Gallagher P, Eyre R, et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry J Ment Sci. 2010;196(1):52–8.CrossRefGoogle Scholar
  69. 69.
    Anand A, Li Y, Wang Y, Lowe MJ, Dzemidzic M. Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res. 2009;171(3):189–98.PubMedCrossRefGoogle Scholar
  70. 70.
    Almeida JR, Mechelli A, Hassel S, Versace A, Kupfer DJ, Phillips ML. Abnormally increased effective connectivity between parahippocampal gyrus and ventromedial prefrontal regions during emotion labeling in bipolar disorder. Psychiatry Res. 2009;174(3):195–201.PubMedCrossRefGoogle Scholar
  71. 71.
    Glahn DC, Robinson JL, Tordesillas-Gutierrez D, Monkul ES, Holmes MK, Green MJ, et al. Fronto-temporal dysregulation in asymptomatic bipolar I patients: a paired associate functional MRI study. Hum Brain Mapp. 2010;31(7):1041–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Rich BA, Vinton DT, Roberson-Nay R, Hommer RE, Berghorst LH, McClure EB, et al. Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proc Natl Acad Sci USA. 2006;103(23):8900–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Altshuler L, Bookheimer S, Townsend J, Proenza MA, Sabb F, Mintz J, et al. Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study. Bipolar Disord. 2008;10(6):708–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Kaladjian A, Jeanningros R, Azorin JM, Nazarian B, Roth M, Anton JL, et al. Remission from mania is associated with a decrease in amygdala activation during motor response inhibition. Bipolar Disord. 2009;11(5):530–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Gruber O, Tost H, Henseler I, Schmael C, Scherk H, Ende G, et al. Pathological amygdala activation during working memory performance: evidence for a pathophysiological trait marker in bipolar affective disorder. Hum Brain Mapp. 2010;31(1):115–25.PubMedGoogle Scholar
  76. 76.
    Blumberg HP, Donegan NH, Sanislow CA, Collins S, Lacadie C, Skudlarski P, et al. Preliminary evidence for medication effects on functional abnormalities in the amygdala and anterior cingulate in bipolar disorder. Psychopharmacology (Berl). 2005;183(3):308–13.CrossRefGoogle Scholar
  77. 77.
    Lanius RA, Brewin CR, Bremner JD, Daniels JK, Friedman MJ, Liberzon I, et al. Does neuroimaging research examining the pathophysiology of posttraumatic stress disorder require medication-free patients? J Psychiatry Neurosci. 2010;35(2):80–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ. Characterizing function–structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage. 2004;21(4):1452–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage. 2008;41(1):45–57.PubMedCrossRefGoogle Scholar
  80. 80.
    Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage. 2008;43(3):554–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA. 2009;106(6): 2035–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98(12):6917–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H, et al. The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain. 2006;129(Pt 2):399–410.PubMedGoogle Scholar
  84. 84.
    Straub RE, Lipska BK, Egan MF, Goldberg TE, Callicott JH, Mayhew MB, et al. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry. 2007;12(9):854–69.PubMedCrossRefGoogle Scholar
  85. 85.
    Mechelli A, Prata DP, Fu CH, Picchioni M, Kane F, Kalidindi S, et al. The effects of neuregulin1 on brain function in controls and patients with schizophrenia and bipolar disorder. Neuroimage. 2008;42(2):817–26.PubMedCrossRefGoogle Scholar
  86. 86.
    Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS, et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage. 2009;45(1):44–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Narr KL, Szeszko PR, Lencz T, Woods RP, Hamilton LS, Phillips O, et al. DTNBP1 is associated with imaging phenotypes in schizophrenia. Hum Brain Mapp. 2009;30(11):3783–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Gutman DA, Holtzheimer PE, Behrens TE, Johansen-Berg H, May­berg HS. A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry. 2008;65(4):276–82.PubMedCrossRefGoogle Scholar
  89. 89.
    Kubicki M, Park H, Westin CF, Nestor PG, Mulkern RV, Maier SE, et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage. 2005;26(4):1109–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiology, Veteran’s Administration Medical CenterUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations