Advertisement

Multi-dimensional Data Visualization using Concentric Coordinates

  • Jiawan Zhang
  • Yuan Wen
  • Quang Vinh Nguyen
  • Liangfu LuEmail author
  • Maolin Huang
  • Jiadong Yang
  • Jizhou Sun
Conference paper

Abstract

This paper proposes a new method called Concentric Coordinate for visualizing multidimensional datasets. To reduce the overlapping and edge crossings among curves, axes are arranged as concentric circles rather than parallel lines that are commonly used in the traditional approach. Edges which represent data items are drawn as segments of curves rather than poly-lines drawn in the classical parallel coordinate approach. Some heuristics are applied in our new method in order to improve the readability of views. The paper demonstrates the advantages of new method. In comparison with the parallel coordinate method, our concentric circle approach can reduce more than 15 % of the edge overlaps and crossings by visualizing the same dataset. In our new approach, we further enhance the readability of views by increasing the crossing angle. Finally, a visual interactive network scans detection system called CCScanViewer is developed based on our new visualization method to represent traffic activities in network flows, and the experiments show that the new approach is effective in detecting unusual patterns of network scans, port scans, the hidden scans, DDoS attacks etc.

Keywords

Concentric Coordinates Multi-dimensional Data Visualization Crossing Reduction Security Visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No.60673196 and the Applied Foundation Research Project of Tianjin under Grant No.07F2030.

References

  1. 1.
    A. Inselberg and B. Dimsdale. Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. In proceedings of Visualization ’90, pages 361–370, 1990.Google Scholar
  2. 2.
    M. Kaufmann and D. Wagner. Drawing Graphs, Springer, 2001.Google Scholar
  3. 3.
    R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In Proceedings of the 1993 IEEE/ACM International Conference on Computer-aided Design (ICCAD ’93), pages 42–47.Google Scholar
  4. 4.
    C. Matuszewski, R. Schönfeld, and P. Molitor. Using Sifting for k-Layer Straightline Crossing Minimization. In Proceedings of 7th Graph Drawing Conference (GD ’99), pages 217–224.Google Scholar
  5. 5.
    Daniel A. Keim. Designing Pixel-Oriented Visualization Techniques: Theory and Applications. IEEE Transaction on Visualization and Computer Graphics, 6(1):59–78, 2000.CrossRefMathSciNetGoogle Scholar
  6. 6.
    E.R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.Google Scholar
  7. 7.
    Colin Ware, Helen Purchase, Linda Colpoys and Matthew McGill. Cognitive Measurements of Graph Aesthetics. Information Visualization, 1(2): 103–110, 2002.CrossRefGoogle Scholar
  8. 8.
    Huang, W. and Eades, P. How people read graphs. In Proceedings Asia Pacific Symposium on Information Visualization (APVIS 2005), 47–53.Google Scholar
  9. 9.
    Christian Bachmaier. A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information. IEEE Transaction on Visualization and Computer Graphic, 13(3):583–594, 2007.CrossRefGoogle Scholar
  10. 10.
    U. Brandes, P. Kenis, and D. Wagner. Communicating Centrality in Policy Network Drawings. IEEE Transaction on Visualization and Computer Graphics, 9(2):241–253, 2003.CrossRefGoogle Scholar
  11. 11.
    Harri Siirtolam and Kari-Jouko Raiha. Interacting with parallel coordinates. Interacting with Computers, 18(6):1278–1309, 2006.CrossRefGoogle Scholar
  12. 12.
    Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarchical parallel coordinates for exploration of large datasets. In Proc. of IEEE Visualization, pages 43–50, 1999.Google Scholar
  13. 13.
    Jimmy Johansson, Patric Ljung, Mikael Jern and Matthew Cooper. Revealing Structure within Clustered Parallel Coordinates Displays. In Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS’05), pages 125–132.Google Scholar
  14. 14.
    Robert Kosara, Fabian Bendix, and Helwig Hauser. Parallel Sets: Interactive Exploration and Visual Analysis of Categorical Data. IEEE Transaction on Visualization and Computer Graphics, 12(4):558–568, 2006.CrossRefGoogle Scholar
  15. 15.
    Geoffrey Ellis and Alan Dix. Enabling Automatic Clutter Reduction in Parallel Coordinates Plots. IEEE Transaction on Visualization and Computer Graphics, 12(5):717–723, 2006.CrossRefGoogle Scholar
  16. 16.
    Matej Novotny and Helwig Hauser. Outlier-preserving Focus+Context Visualization in Parallel Coordinates. IEEE Transaction on Visualization and Computer Graphics, 12(5):893-900, 2006.CrossRefGoogle Scholar
  17. 17.
    Ying-Huey Fua, Matthew O. Ward and Elke A. Rundensteiner. Navigating Hierarchies with Structure-Based Brushes. In Proceedings of the 1999 IEEE Symposium on Information Visualization (INFOVIS’99), pages 58–64.Google Scholar
  18. 18.
    Jimmy Johansson, Matthew Cooper and Mikael Jern. 3-Dimensional Display for Clustered Multi-Relational Parallel Coordinates. In Proceedings of the Ninth International Conference on Information Visualisation (IV’05), pages 188–193.Google Scholar
  19. 19.
    Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta. Radial Drawings of Graphs: Geometric Constraints and Trade-off. In Proceedings of 7th Graph Drawing Conference (GD’06), pages 355–366.Google Scholar
  20. 20.
    G.P. Ellis and A. Dix. Density control through random sampling : an architectural perspective. In Proceedings of International Conference on Information Visualization (IV’02), pages 82-90.Google Scholar
  21. 21.
    Almir Oivertte Artero, Maria Cristina Ferreira de Oliveria and Haim Levkowitz. Uncovering Clusters in Crowded Parallel Coordinates Visualizations. In Proceedings of the 2004 IEEE Symposium on Information Visualization (INFOVIS’04), pages 81–88.Google Scholar
  22. 22.
    Daniel A. Keim. Information Visualization and Visual Data Mining. IEEE Transaction on Visualization and Computer Graphics, 8(1):1–8, 2002.CrossRefGoogle Scholar
  23. 23.
    Wei Peng, Matthew O. Ward, and Elke A. Rundensteiner. Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering. In Proceedings of the IEEE Symposium on Information Visualization 2004 (INFOVIS’04), pages 89–96.Google Scholar
  24. 24.
    Keim, D.A.; Mansmann, F.; Schneidewind, J.; Schreck, T., Monitoring Network Traffic with Radial Traffic Analyzer Visual Analytics And Technology. In proceedings IEEE Symposium on Visual Analytics Science and Technology 2006 (VAST 2006), pages:123–128Google Scholar
  25. 25.
    Roel Vliegen, Jarke J.van Wijk and Erik-Jan van der Linden. Visualizing Business Data with Generalized Treemaps, IEEE Transaction on. Visualization and Computer Graphics, 12(5):789-796, 2006.CrossRefGoogle Scholar
  26. 26.
    Wegenkittl R, Löffelmann H, Gröller E. Visualizing the behaviour of higher dimensional dynamical systems. IEEE Visualization 1997 (Phoenix, USA, 1997), ACM Press: New York; 119125Google Scholar
  27. 27.
    Tominski C, Abello J, Schumann H. Axes-based visualizations with radial layouts. ACM Symposium on Applied Computing 2004 (Nicosia, Cyprus, 2004), ACM Press: New York; 12421247.Google Scholar
  28. 28.
    Forsell C, Johansson J. Task-based evaluation of multi-relational 3D and standard 2D parallel coordinates. IS&T/SPIE’s International Symposium on Electronic Imaging, Conference on Visualization and Data Analysis 2007 (San Jose, USA, 2007), SPIE: Bellingham and IS&T:Springfield; 64950C-112.Google Scholar
  29. 29.
    C.Muelder, , Ma, K.L., Bartoletti, T.: A visualization methodology for characterization of network scans. Visualization for Computer Security, IEEE Workshops, pp. 4–4 (2005)Google Scholar
  30. 30.
    G.Conti,Abdullah, K.: “Passive visual fingerprinting of network attack tools”. VizSEC/DMSEC ’04: Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security, 2004,pp. 45–54Google Scholar
  31. 31.
    J.McPherson, ,Ma, K.L., Krystosk, P., Bartoletti, T., Christensen,M.: Portvis: “A tool for port-based detection of security events”. In: ACM VizSEC 2004 Workshop, 2004,pp.73–81Google Scholar
  32. 32.
    Pin Ren, Yan Gao and Zhichun Li, “IDGraphs: Intrusion Detection and Analysis Using Histographs”, Visualization for Computer Security, 2005, pp.39-46Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Jiawan Zhang
    • 1
  • Yuan Wen
    • 1
  • Quang Vinh Nguyen
    • 2
  • Liangfu Lu
    • 3
    • 1
    Email author
  • Maolin Huang
    • 4
  • Jiadong Yang
    • 1
  • Jizhou Sun
    • 1
  1. 1.School of Computer Science and TechonologyTianjin UniversityTianjinP.R.China
  2. 2.School of Computing & MathematicsUniversity of Western SydneySydneyAustralia
  3. 3.Mathematics DepartmentTianjin UniversityTianjinP.R.China
  4. 4.Faculty of information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations