Locomotion, Postures, and Habitat Use by Pygmy Marmosets (Cebuella pygmaea)

Chapter

Abstract

Pygmy marmosets (Cebuella pygmaea) are the smallest representatives of the Callitrichidae and are characterized by morphological correlates to extensive exudativory and to frequent claw climbing, clinging, quadrupedalism, and leaping on vertical supports. This morpho-behavioral complex is unique and crucial for understanding the evolutionary history of the family. I studied the positional behavior and habitat use of a group of pygmy marmosets in a terra-firme rainforest in Amazonian Ecuador. During the study period, the pygmy marmosets confined their movements to the understory of a dense liana forest, where they largely utilized lianas and tree trunks, showing a strong preference for the latter. In addition, they extensively used and preferred supports  > 10 cm in diameter, and almost two thirds of these supports were vertical. Feeding bouts (finding, manipulating, and eating plant foods) on exudates and foraging (finding, manipulating, and eating arthropod prey) occurred at around 5 m above ground. The dominant feeding posture was claw clinging on vertical trunks. In contrast, the dominant foraging postures were quadru-tripedal stand and cantilever, with extensive use of small and medium sized lianas. Traveling occurred lower to the ground than did foraging or feeding, and locomotion was dominated by claw climbing and terminal leaping, and low proportions of quadrupedal activities and vertical leaps. Claw climbing was mainly used for movements within trees, while the other forms of locomotion were used for crossing between trees. Landing support use was similar for both short and long terminal leaps. However, both short and long vertical leaps initiated from and ended on larger supports more frequently than terminal leaps. In addition, long vertical leaps were initiated on larger supports than were shorter vertical leaps. Field observations show that pygmy marmosets use claw climbing, claw clinging, and vertical supports more than any other callitrichid, but they use less leaping and vertical leaping than Callimico. In general, these positional data are not entirely coupled with morphological predictions for pygmy marmosets, but likely reflect adaptations that evolved recently within the evolutionary radiation of callitrichids.

Resumen

Las marmosetas pigmeas (Cebuella pygmea) son los representantes más pequeños de los Callitrichidae y están caracterizados por sus correlaciones morfológicas de alimentación extensiva de exudados y de frecuentes ascensos y agarres con garras, cuadrupedalismo y saltos sobre soportes verticales. Este complejo morfológico-conductual es único y crucial para comprender la historia evolutiva de la familia. Yo estudié el comportamiento postural y el uso del hábitat de un grupo de marmosetas pigmeas en la selva de terra-firme en la Amazonia del Ecuador. Durante el periodo de estudio, las marmosetas pigmeas limitaron sus movimientos en el sotobosque de un denso bosque de lianas, en donde utilizaron principalmente lianas y troncos de árboles, mostrando una fuerte preferencia por estos últimos. Adicionalmente, utilizaron y prefirieron soportes  > 10 cm de diámetro, siendo verticales casi dos tercios de estos soportes. Los episodios de alimentación de exudados y de forrajeo (encontrando, manipulando y comiendo presas de artrópodos) ocurrieron a una altura aproximada de 5 m del suelo. La postura dominante de alimentación fue el agarre con garras de troncos verticales. En contraste, la postura dominante de forrajeo fue el postura cuadru-trípeda y voladiza, con uso extensivo de lianas de tamaño pequeño y mediano. El desplazamiento ocurrió más cerca al suelo que el forrajeo o la alimentación y la locomoción estuvo dominada por el asenso con garras y saltos terminales, así como por proporciones bajas de actividades cuadrúpedas y saltos verticales. El asenso con garras fue usado principalmente en el movimiento dentro del mismo árbol, mientras que las otras formas de locomoción se usaron para cruces entre los árboles. El uso de soportes de aterrizaje fue similar para saltos terminales tanto cortos como largos. Sin embargo, los saltos verticales cortos y largos, iniciaron y terminaron en soportes más grandes con mayor frecuencia que los saltos terminales. Adicionalmente, los saltos verticales largos también se iniciaron en soportes más grandes que los saltos verticales cortos. Observaciones de campo muestran que las marmosetas pigmeas utilizan el ascenso con garras, el agarre con garras y los apoyos verticales más que cualquier otro calitrícido, pero utilizan menos saltos y saltos verticales que Callimico. En general, estos datos posturales no están enteramente acoplados con las predicciones morfológicas para las marmosetas pigmeas, pero posiblemente reflejan adaptaciones que evolucionaron recientemente dentro de la radiación evolutiva de los calitrícidos.

Resumo

Sagüis-leãozinho (Cebuella pygmaea) são os menores representantes dos Callitrichidae e são caracterizados por terem uma morfologica correlata à sua extensiva exudativoria e ao frequente uso das garras para subir, agarrar, locomoção quadrupedal e salto em suportes verticais. Este complexo morfo-comportamental é único e crucial para entendermos a história evolutiva da família. Eu estudei o comportamento postural e uso do habitat de um grupo de sagüis-leãozinho na floresta de terra firme da Amazônia Equatoriana. Durante o periodo de estudo, os sagüis leãozinho confinaram seus movimentos na parte mais baixa da floresta de liana densa, onde eles usaram amplamente as lianas e os troncos de árvores, mostrando uma forte preferência pelos últimos. Mais ainda, eles usaram extensivamente e preferencialmente suportes  > 10 cm de diâmetro, e quase dois terços destes suportes eram verticais. A alocação de tempo à alimentação (procura, manipulação e predação de artópodos) ocorreu cerca de 5 m acim a do solo. A postura de alimentação dominante foi qaudru-tripedal em pé e “cantilever,” com extensivo uso de lianas de pequeno e médio porte. A movimentação ocorreu mais abaixo e próxima ao solo do que o forrageamento ou alimentação e a locomoção foi dominada por subidas com garras e saltos terminais, e baixa proporção de atividades quadrupedais e saltos verticais. Subindo com garras foi principalmente utilizado em movimentos em cada árvore individualmente, enquanto as outras formas de movimentação foram usadas para atravessar entre árvores. O uso de suporte de aterragem foi similar tanto para saltos longos como curtos. Entretanto, tanto saltos curtos como longos na vertical iniciaram e terminaram em suportes maiores do que os saltos terminais. Adicionalmente, saltos verticais mais longos foram iniciados em suportes mais largos mais frequentemente do que saltos terminais. Observações de campo mostram que os sagüis-leãozinho usam as garras para subir e agarrar nos troncos, e suportes verticais mais do que qualquer outro callitriquídeo, mas usam menos saltos horizontais e verticais do que Callimico. Em geral, estes dados de postura corporal não são inteiramente congruentes com as previsões morfologicas para sagüis-leãozinho, mas provavelmente refletem adaptações que evoluiram recentemente dentro da radiação evolutiva dos calitriquídeos.

References

  1. Arms A, Voges D, Fischer M, Preuschoft H (2002) Arboreal locomotion in small New World monkeys. Z Morphol Anthropol 83:243–263PubMedGoogle Scholar
  2. Bicca-Marques JC (1999) Hand specialization, sympatry, and mixed-species associations in callitrichines. J Hum Evol 36:349–378CrossRefPubMedGoogle Scholar
  3. Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins FA Jr (ed) Primate locomotion. Academic Press, New York, pp 45–83Google Scholar
  4. Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake KD (eds) Functional vertebrate morphology. Belknap Press, Cambridge, pp 73–88Google Scholar
  5. Charles-Dominique P (1977) Ecology and behaviour of nocturnal primates. Columbia University Press, New YorkGoogle Scholar
  6. Cortés-Ortiz L (this volume) Molecular phylogenetics of the Callitrichidae with an emphasis on the marmosets and Callimico. In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 3–24Google Scholar
  7. Crompton RH (1984) Habitat structure, foraging, and locomotion in two species of Galago. In: Rodman PS, Cant JGH (eds) Adaptations for foraging in non-human primates. Columbia University Press, New York, pp 73–111Google Scholar
  8. Crompton RH, Sellers WI, Gunther MM (1993) Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proc R Soc Lond B 254:41–45CrossRefGoogle Scholar
  9. Cunha AA, Vieira MV, Grelle CEV (2006) Preliminary observation on habitat, support use and diet in two non native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the tijuca forest, Rio de Janeiro. Urban Ecosyst 9:351–359CrossRefGoogle Scholar
  10. Davis LC (2002) Functiona morphology of the forelimb and long bones in the Callitrichidae (Platyrrhini, Primates). PhD Dissertation, Southern Illinois University, CarbondaleGoogle Scholar
  11. Demes B, Jungers WL, Gross TS, Fleagle JG (1995) Kinetics of leaping primates: Influence of substrate orientation and compliance. Am J Phys Anthrop 96:416–429CrossRefGoogle Scholar
  12. Fleagle JG, Mittermeier RA (1980) Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am J Phys Anthrop 52:301–314CrossRefGoogle Scholar
  13. Ford SM (1980) Callithricids as phyletic dwarfs, and the place of the Callithricidae in the Platyrrhini. Primates 21:31–43CrossRefGoogle Scholar
  14. Ford SM (1986) Comments on the evolution of claw-like nails in Callithricids (marmosets/tamarins). Am J Phys Anthrop 70:25–26CrossRefPubMedGoogle Scholar
  15. Ford SM, Davis LC (1992) Systematics and body size: implications for feeding adaptations in New World monkeys. Am J Phys Anthropol 88:415–468Google Scholar
  16. Ford SM, Davis LC (this volume) Marmoset postcrania and the skeleton of the dwarf marmoset, Callibella humilis. In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 411–448Google Scholar
  17. Garber PA (1980) Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callithricidae, Primates). Int J Primatol 1:185–201CrossRefGoogle Scholar
  18. Garber PA (1991) A comparative study of positional behavior in three species of tamarin monkeys. Primates 32:219–230CrossRefGoogle Scholar
  19. Garber PA (1992) Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am J Phys Anthrop 88:469–482CrossRefPubMedGoogle Scholar
  20. Garber PA, Leigh SR (2001) Patterns of positional behavior in mixed-species troops of Callimico goeldi, Saguinus labiatus, and Saguinus fuscicollis in northwestern Brazil. Am J Primatol 54:17–31CrossRefPubMedGoogle Scholar
  21. Garber PA, Pruetz JD (1995) Positional behavior in moustached tamarin monkeys: Effects of habitat on locomotor variability and locomotor stability. J Hum Evol 28:411–426CrossRefGoogle Scholar
  22. Garber PA, Sussman RW (1984) Ecological distinctions in sympatric species of Saguinus and Sciurus. Am J Phys Anthrop 65:135–146CrossRefPubMedGoogle Scholar
  23. Garber PA, Blomquist G, Anzenberger G (2005) Kinematic analysis of trunk-to-trunk leaping in Callimico goeldii. Int J Primatol 26:223–240CrossRefGoogle Scholar
  24. Garber PA, Sallanave A, Blomquist G, Anzenberger G (this volume) A comparative study of the kinematics of trunk-to-trunk leaping in Callimico goeldii, Callithrix jacchus, and Cebuella pygmaea. In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 259–277Google Scholar
  25. Hamrick MW (1998) Functional and adaptive significance of primate pads and claws: Evidence from New World anthropoids. Am J Phys Anthrop 106:113–127CrossRefPubMedGoogle Scholar
  26. Hershkovitz P (1977) Living New World monkeys (Platyrrhini), vol 1. University of Chicago Press, ChicagoGoogle Scholar
  27. Jackson CP, Ford SM (2006) Contexts of positional behavior in captive pygmy marmosets (Cebuella pygmaea). Am J Phys Anthrop S42:109Google Scholar
  28. Jacobs J (1974) Quantitative measurement of food selection. Oecologia 14:413–417CrossRefGoogle Scholar
  29. Kinzey WG, Rosenberger AL, Ramirez M (1975) Vertical clinging and leaping in a neotropical anthropoid. Nature 255:327–328CrossRefPubMedGoogle Scholar
  30. Neusser M, Stanyon R, Bigoni F, Wienberg J, Muller S (2001) Molecular cytotaxonomy of New World monkeys (Platyrrhini): comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family Callitrichidae. Cytogenet Cell Genet 94:206–215CrossRefPubMedGoogle Scholar
  31. Off EC, Gebo DL (2005) Galago locomotion in Kibale National Park, Uganda. Am J Primatol 66:189–195CrossRefPubMedGoogle Scholar
  32. Porter L (2004) Forest use and activity patterns of Callimico goeldi in comparison to two sympatric tamarins, Saguinus fuscicollis and Saguinus labiatus. Am J Phys Anthrop 124:139–153CrossRefPubMedGoogle Scholar
  33. Porter LM, Garber PA (2004) Goeldi’s monkeys: A primate paradox? Evol Anthropol 13:104–115CrossRefGoogle Scholar
  34. Rosenberger AL (1977) Xenothrix and ceboid phylogeny. J Hum Evol 6:461–481CrossRefGoogle Scholar
  35. Rosenberger AL (1992) Evolution of feeding niches in New World monkeys. Am J Phys Anthropol 88:525–562Google Scholar
  36. Rosenberger AL, Stafford BJ (1994) Locomotion in captive Leontopithecus and Callimico: a multimedia study. Am J Phys Anthrop 94:379–394CrossRefPubMedGoogle Scholar
  37. Soini P (1988) The pygmy marmoset, genus Cebuella. In: Mittermeier RA, Rylands AB, Coimbra-Filho A, Fonseca GAB (eds) Ecology and behavior of neotropical primates. WWF, Washington, DC, pp 79–130Google Scholar
  38. Sussman RW, Kinzey WG (1984) The ecological role of the Callithricidae: A review. Am J Phys Anthrop 64:419–449CrossRefPubMedGoogle Scholar
  39. Thorington RW Jr, Thorington EM (1989) Postcranial proportions of Microsciurus and Sciurillus, the American pygmy tree squirrels. Adv Neotrop Mammal 1989:125–136Google Scholar
  40. Townsend WR (2001) Callithrix pygmaea. Mammal Spec 665:1–6CrossRefGoogle Scholar
  41. Van Roosmalen MGM, van Roosmalen T (2003) The description of a new marmoset genus, Callibella (Callitrichinae, Primates), including its molecular phylogenetic status. Neotrop Prim 11:1–10Google Scholar
  42. Warren RD (1997) Habitat use and support preference of two free-ranging saltatory lemurs (Lepilemur edwardsi and Avahi occidentalis). J Zool Lond 241:325–341CrossRefGoogle Scholar
  43. Yoneda M (1984) Comparative studies on vertical separation, foraging behavior and traveling mode of saddle-backed tamarins (Saguinus fuscicollis) and red-chested moustached tamarins (Saguinus labiatus) in northern Bolivia. Primates 25:414–422CrossRefGoogle Scholar
  44. Youlatos D (1999a) Comparative locomotion of six sympatric primates in Ecuador. Ann Sci Nat Zool Biol Anim 20:161–168Google Scholar
  45. Youlatos D (1999b) Positional behavior of Cebuella pygmaea in Yasuni National Park, Ecuador. Primates 40:543–550CrossRefGoogle Scholar
  46. Youlatos D (1999c) Locomotor and postural behavior of Sciurus igniventris and Microsciurus flaviventer (Rodentia, Sciuridae) in eastern Ecuador. Mammalia 63:405–416CrossRefGoogle Scholar
  47. Youlatos D (2004) A multivariate analysis of organismal and habitat parameters in two neotropical primate communities. Am J Phys Anthrop 123:181–194CrossRefPubMedGoogle Scholar
  48. Youlatos D, Gasc J-P (2001) Comparative positional behaviour of five primates. In: Bongers F, Charles-Dominique P, Forget M, Théry M (eds) Nouragues: Dynamics and plant-animal interactions in a neotropical rain forest. Kluwer Academic Publishers, Dordrecht, pp 103–114Google Scholar
  49. Zar JH (1996) Biostatistical analysis. Prentice-Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ZoologyAristotle University of Thessaloniki, School of BiologyThessalonikiGreece

Personalised recommendations