Bone Marrow Micrometastases Studied by an Immunomagnetic Isolation Procedure in Extremity Localized Non-metastatic Osteosarcoma Patients

  • Øyvind S. BrulandEmail author
  • Hanne Høifødt
  • Kirsten Sundby Hall
  • Sigbjørn Smeland
  • Øystein Fodstad
Part of the Cancer Treatment and Research book series (CTAR, volume 152)


Hematogenous spread of tumor cells is an early event in osteosarcoma and present in the majority of patients at primary diagnosis. Eradication of such micrometastases by adjuvant combination chemotherapy is crucial for survival. However, a survival plateau of 60-70% was reached over two decades ago, above which it seems difficult to further advance with the currently available therapies.

In this study we have, by an immunomagnetic isolation procedure, examined the presence and prognostic impact of disseminated tumor cells in bone marrow aspirates taken at primary diagnosis in a cohort of 41 non-metastatic patients with extremity localized, high-grade osteosarcoma.


Human Serum Albumin Disseminate Tumor Cell Primary Bone Sarcoma Suspected Bone Adjuvant Combination Chemotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Malawer MM, Helman LJ, O’Sullivan B. Sarcomas of bone. In: Devita VT, Hellman S, Rosenberg SA, eds. Cancer – Principles & Practice of Oncolog. 7th ed. Philadelphia: Lippincott-Raven Publishers; 2005:1638-1686.Google Scholar
  2. 2.
    Bruland OS, Pihl A. On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer. 1997;33(11):1725-1731.CrossRefPubMedGoogle Scholar
  3. 3.
    Huvos AG. Osteogenic sarcoma. In: Huvos AG, ed. one Tumors. Diagnosis, treatment and prognosis. Philadelphia: WB Saunders; 1991:85-155.Google Scholar
  4. 4.
    Dahlin D, Unni K. Osteogenic sarcoma of bone and its important recognizable varieties. Am J Surg Pathol.. 1977;1:61-72.CrossRefPubMedGoogle Scholar
  5. 5.
    Sæter G, Bruland ØS, Follerås G, et al. Extremity and non-extremity high-grade osteosarcoma The Norwegian Radium Hospital experience during the modern chemotherapy era. Acta Oncol. 1996;35(Suppl 8):129-134.CrossRefPubMedGoogle Scholar
  6. 6.
    Aksnes LH, Hall KS, Folleraas G, et al. Management of high-grade bone sarcomas over two decades: the Norwegian Radium Hospital experience. Acta Oncol. 2006;45(1):38-46.CrossRefPubMedGoogle Scholar
  7. 7.
    Cade S. Osteogenic sarcoma: a study based on 133 patients. J R Coll Surg Edinb. 1955;1: 79-111.PubMedGoogle Scholar
  8. 8.
    Tournade MF, Com-Nougué C, Voûte PA, et al. Results of the Sixth International Society of Pediatric Oncology Wilms’ Tumor Trial and Study: a risk-adapted therapeutic approach in Wilms’ tumor. J Clin Oncol. 1993;11(6):1014-1023.PubMedGoogle Scholar
  9. 9.
    Larson S, Stock W. Progress in the treatment of adults with acute lymphoblastic leukemia. Curr Opin Hematol. 2008;15(4):400-407.CrossRefPubMedGoogle Scholar
  10. 10.
    Mansi JL, Gogas H, Bliss JM, et al. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet.. 1999;354(9174):197-202.CrossRefPubMedGoogle Scholar
  11. 11.
    Pantel K, Cote RJ, Fodstad O. Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst. 1999;91(13):1113-1124.CrossRefPubMedGoogle Scholar
  12. 12.
    Wiedswang G, Borgen E, Kaaresen R, et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol. 2003;21:3469-3478.CrossRefPubMedGoogle Scholar
  13. 13.
    Pantel K, Muller V, Auer M, et al. Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res. 2003;9(17):6326-6334.PubMedGoogle Scholar
  14. 14.
    Brunsvig PF, Flatmark K, Aamdal S, et al. Bone marrow micrometastases in advanced stage non-small cell lung carcinoma patients. Lung Cancer. 2008;61(2):170-176.CrossRefPubMedGoogle Scholar
  15. 15.
    Braun S, Vogl FD, Naume B, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793-802.CrossRefPubMedGoogle Scholar
  16. 16.
    Bruland OS, Høifødt H, Saeter G, Smeland S, Fodstad O. Hematogenous micrometastases in osteosarcoma patients. Clin Cancer Res. 2005;11(13):4666-4673.CrossRefPubMedGoogle Scholar
  17. 17.
    Carlson MJ. Circulating sarcoma cells: the incidence of 3thymidine labeling in the peripheral blood of normal and sarcoma patients. Thesis – University of Minnesota 1978.Google Scholar
  18. 18.
    Kaiser TE. The detection of tritiated thymidine labeled cells in the peripheral blood of sarcoma patients and the nature of these cells bearing prognostic significance for sarcoma patients. Thesis – University of Minnesota 1985.Google Scholar
  19. 19.
    Foss PO, Messelt OT, Efskind J. Isolation of cancer cells from blood and thoracic duct lymph by filtration. Surgery. 1963;53(2):241-246.PubMedGoogle Scholar
  20. 20.
    Foss PO, Brennhovd IO, Messelt OT, Efskind J, Liverud K. Invasion of tumor cells into the bloodstream caused by palpation or biopsy of the tumor. Surgery. 1966;59(5):691-695.PubMedGoogle Scholar
  21. 21.
    Ghossein RA, Bhattacharya S. Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours. Eur J Cancer. 2000;36(13):1681-1694.CrossRefPubMedGoogle Scholar
  22. 22.
    Taback B, Chan AD, Kuo CT, et al. Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: Correlation with clinical stage of disease. Cancer Res. 2001;61:8845-8850.PubMedGoogle Scholar
  23. 23.
    Flatmark K, Bjørnland K, Johannessen HO, et al. Immunomagnetic detection of micrometastatic cells in bone marrow of colorectal cancer patients. Clin Cancer Res. 2002;8(2):444-449.PubMedGoogle Scholar
  24. 24.
    Faye R, Aamdal S, Høifødt HK, et al. Immunomagnetic detection and clinical significance of micrometastatic tumor cells in malignant melanoma patients. Clin Cancer Res.2004;15:4134-4149.CrossRefGoogle Scholar
  25. 25.
    Bruland ØS, Fodstad Ø, Funderud S, Pihl A. New monoclonal antibodies specific for human sarcomas. Int J Cancer. 1986;38:27-31.CrossRefPubMedGoogle Scholar
  26. 26.
    Bruland ØS, Fodstad Ø, Stenwig E, Pihl A. Expression and characteristics of a novel human osteosarcoma-associated cell surface antigen. Cancer Res. 1988;48:5302-5309.PubMedGoogle Scholar
  27. 27.
    Bruland ØS, Fodstad Ø, Skretting A, Pihl A. Selective radiolocalization of two radiolabelled anti-sarcoma monoclonal antibodies in human osteosarcoma xenografts. Br J Cancer. 1987;56:21-25.CrossRefPubMedGoogle Scholar
  28. 28.
    Bruland ØS, Aas M, Fodstad Ø, et al. Immunoscintigraphy of bone sarcomas. Results in five patients. Eur J Cancer. 1994;30:1484-1489.CrossRefGoogle Scholar
  29. 29.
    Morgan AC Jr, Galloway DR, Reisfeld RA. Production and characterization of a monoclonal antibody to a melanoma specific glycoprotein. Hybridoma. 1981;1:27-36.PubMedGoogle Scholar
  30. 30.
    Godal A, Bruland OS, Haug E, Aas M, Fodstad O. Unexpected expression of the 250 kD melanoma-associated antigen in human sarcoma cells. Br J Cancer. 1986;53:839-841.CrossRefPubMedGoogle Scholar
  31. 31.
    Fagnou C, Michon J, Peter M, et al. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. J Clin Oncol. 1998;16:1707-1711.PubMedGoogle Scholar
  32. 32.
    Athale UH, Shurtleff SA, Jenkins JJ, et al. Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatric Hematol/Oncol. 2001;23/2:99-104.CrossRefGoogle Scholar
  33. 33.
    Schleiermacher G, Peter M, Oberlin O, et al. Increased risk of systemic relapse associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol. 2003;21(1):85-91.CrossRefPubMedGoogle Scholar
  34. 34.
    Tveito S, Maelandsmo GM, Hoifodt HK, Rasmussen H, Fodstad Ø. Specific isolation of disseminated cancer cells: a new method permitting sensitive detection of target molecules of diagnostic and therapeutic value. Clin Exp Metastasis. 2007;24(5):317-327.CrossRefPubMedGoogle Scholar
  35. 35.
    Baldini N, Scotlandi K, Barbanti-Brodano G, et al. Expression of P-glycoprotein in high-grade osteosarcoma in relation to clinical outcome. N Engl J Med. 1995;333:1380-1385.CrossRefPubMedGoogle Scholar
  36. 36.
    Gorlick R, Anderson P, Andrulis I, et al. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res. 2003;5442/9:5442-5453.Google Scholar
  37. 37.
    Serra M, Scotlandi K, Reverter-Branchat G, et al. Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol. 2003;21(3):536-542.CrossRefPubMedGoogle Scholar
  38. 38.
    Valabrega G, Fagioloi F, Corso S, et al. ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells. Br J Cancer. 2003;88:396-400.CrossRefPubMedGoogle Scholar
  39. 39.
    Serra M, Reverter-Branchat G, Maurici D, et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 2004;15:151-160.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Øyvind S. Bruland
    • 1
    Email author
  • Hanne Høifødt
  • Kirsten Sundby Hall
  • Sigbjørn Smeland
  • Øystein Fodstad
  1. 1.Faculty of MedicineUniversity of Oslo and Dept. of Oncology, The Norwegian Radium HospitalOsloNorway

Personalised recommendations